Advertisement

Aquatic Sciences

, Volume 76, Issue 1, pp 1–15 | Cite as

Modelling habitat requirements of bullhead (Cottus gobio) in Alpine streams

  • Paolo Vezza
  • P. Parasiewicz
  • O. Calles
  • M. Spairani
  • C. Comoglio
Research Article

Abstract

In the context of water resources planning and management, the prediction of fish distribution related to habitat characteristics is fundamental for the definition of environmental flows and habitat restoration measures. In particular, threatened and endemic fish species should be the targets of biodiversity safeguard and wildlife conservation actions. The recently developed meso-scale habitat model (MesoHABSIM) can provide solutions in this sense by using multivariate statistical techniques to predict fish species distribution and to define habitat suitability criteria. In this research, Random Forests (RF) and Logistic Regressions (LR) models were used to predict the distribution of bullhead (Cottus gobio) as a function of habitat conditions. In ten reference streams of the Alps (NW Italy), 95 mesohabitats were sampled for hydro-morphologic and biological parameters, and RF and LR were used to distinguish between absence/presence and presence/abundance of fish. The obtained models were compared on the basis of their performances (model accuracy, sensitivity, specificity, Cohen’s kappa and area under ROC curve). Results indicate that RF outperformed LR, for both absence/presence (RF: 84 % accuracy, k = 0.58 and AUC = 0.88; LR: 78 % accuracy, k = 0.54 and AUC = 0.85) and presence/abundance models (RF: 79 % accuracy, k = 0.57 and AUC = 0.87; LR: 69 % accuracy, k = 0.43 and AUC = 0.81). The most important variables, selected in each model, are discussed and compared to the available literature. Lastly, results from models’ application in regulated sites are presented to show the possible use of RF in predicting habitat availability for fish in Alpine streams.

Keywords

Mesohabitat MesoHABSIM Alpine streams Cottus gobio Habitat suitability 

Notes

Acknowledgments

The presented research was developed in the framework of the HolRiverMed project (275577—FP7-PEOPLE-2010-IEF, Marie Curie Actions) and in collaboration with the Regional Consortium for Fisheries Management in the Aosta Valley (Consorzio Regionale Tutela Pesca - Valle d’Aosta). The data collection was funded by the Regione Piemonte (C61 Project—CIPE 2004) and through the dams monitoring program of Compagnia Valdostana delle Acque (CVA S.p.a.).

References

  1. Abrahamsson C, Johansson J, Sparén A, Lindgren F (2003) Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets. Chemometrics Intellig Lab Syst 69:3–12CrossRefGoogle Scholar
  2. Acreman MC, Ferguson AJD (2010) Environmental flows and the European water framework directive. Freshwat Biol 55:32–48CrossRefGoogle Scholar
  3. Ahmadi-Nedushan B, St-Hilaire A, Bérubé M, Robichaud É, Thiémonge N, Bobée B (2006) A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment. River Res Appl 22:503–523CrossRefGoogle Scholar
  4. Bain MB, Knight JG (1996) Classifying stream habitat using fish community analysis. In: Leclerc MCH, Valentin S, Boudreau A, Cote Z (eds) Ecohydraulics 2000. 2nd International Symposium on Habitat Hydraulics, INRS-Eau, Quebec City, pp 107–117Google Scholar
  5. Borsányi P, Alfredsen K, Harby A, Ugedal O, Borsányi CKL (2003) A meso-scale habitat classification method for production modelling of atlantic salmon in NorwayGoogle Scholar
  6. Breiman L (2001) Random forest. Mach Learn 45:5–32CrossRefGoogle Scholar
  7. Breiman L, Friedman JH, Olshen R, Stone CJ (1984) Classification and regression trees. Wadsworth and Brooks, MontereyGoogle Scholar
  8. Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Global Change Biol 16:1145–1157CrossRefGoogle Scholar
  9. Carter MG, Copp GH, Szomlai V (2004) Seasonal abundance and microhabitat use of bullhead Cottus gobio and accompanying fish species in the River Avon (Hampshire), and implications for conservation. Aquatic Conserv 14:395–412CrossRefGoogle Scholar
  10. Cheng L, Lek S, Lek-Ang S, Li Z (2012) Predicting fish assemblages and diversity in shallow lakes in the Yangtze River basin. Limnologica 42:127–136CrossRefGoogle Scholar
  11. Ciuffardi L, Bassani I (2005) Segnalazione del successo riproduttivo della Lampreda di mare (Petromyzon marinus) in Provincia della Spezia. Biologia ambientale 19:15–16Google Scholar
  12. Comoglio C, Prato EP, Ferri M, Gianaroli M (2007) A case study of river rehabilitation for fish in northern Italy: the Panaro river project. Am J Environ Sci 3:85–92CrossRefGoogle Scholar
  13. Cowx IG, Harvey JP (2000) Monitoring the bullhead, Cottus gobio. Conserving Natura (2000) Rivers. English Nature Peterborough, UKGoogle Scholar
  14. Crivelli AJ (1996) The freshwater fish endemic to the Mediterranean region. An action plan for their conservation. Tour du Valat PublicationGoogle Scholar
  15. Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88:2783–2792PubMedCrossRefGoogle Scholar
  16. Davey AJH, Hawkins SJ, Turner GF, Doncaster CP (2005) Size-dependent microhabitat use and intraspecific competition in Cottus gobio. J Fish Biol 67:428–443CrossRefGoogle Scholar
  17. Drew CA, Wiersma Y, Huettmann F (2011) Predictive species and habitat modeling in Landscape ecology: concepts and applications. Springer, New YorkCrossRefGoogle Scholar
  18. Evans J, Cushman S (2009) Gradient modeling of conifer species using random forests. Landscape Ecol 24:673–683CrossRefGoogle Scholar
  19. Filipe AF, Cowx IG, Collares-pereira MJ (2002) Spatial modelling of freshwater fish in semi-arid river systems: a tool for conservation. River Res Appl 18:123–136CrossRefGoogle Scholar
  20. Fox J (2007) Polycor: polychoric and polyserial correlations. R package version 0.7-5, http://CRAN.R-project.org/package=polycor. Accessed 3 April 2010
  21. Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, New YorkCrossRefGoogle Scholar
  22. Frissell C, Liss W, Warren C, Hurley M (1986) A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ Manage 10:199–214CrossRefGoogle Scholar
  23. Gandolfi G, Zenurian S, Torricelli P, Marconato A (1991) I pesci delle acque interne italiane—Italian inland water fishes. Ministero dell’Ambiente, Istituto Poligrafico e Zecca dello Stato, RomaGoogle Scholar
  24. Gosselin M, Petts G, Maddock I (2010) Mesohabitat use by bullhead (Cottus gobio). Hydrobiologia 652:299–310CrossRefGoogle Scholar
  25. Gosselin MP, Maddock I, Petts G (2012) Mesohabitat use by brown trout (Salmo trutta) in a small groundwater-dominated stream. River Res Appl 28:390–401CrossRefGoogle Scholar
  26. Grenouillet G, Buisson L, Casajus N, Lek S (2011) Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34:9–17CrossRefGoogle Scholar
  27. Hauer C, Unfer G, Tritthart M, Formann E, Habersack H (2010) Variability of mesohabitat characteristics in riffle-pool reaches: testing an integrative evaluation concept (FGC) for MEM-application. River Res Appl. doi: 10.1002/rra.1357 Google Scholar
  28. Hayer CA, Wall SS, Berry CR Jr (2008) Evaluation of predicted fish distribution models for rare fish species in South Dakota. N Am J Fish Manage 28:1259–1269CrossRefGoogle Scholar
  29. Hooten MB (2011) The state of spatial and spatio-temporal statistical modeling. In: Drew C, Wiersma Y, Huettmann F (eds) Predictive species and habitat modeling in landscape ecology. Springer, New York, pp 29–41CrossRefGoogle Scholar
  30. Hosmer DW, Lemeshow S (2000) Applied Logistic Regression, 2nd edn. John Wiley & Sons, Inc., New YorkCrossRefGoogle Scholar
  31. Jewitt GPW, Weeks DC, Heritage GL, Gorgens AHM (2001) Modelling abiotic-biotic links in the rivers of the Kruger National Park Mpumulanga South Africa. In: Acreman M, Jewitt GPW (eds) Hydro-ecology: linking hydrology and aquatic ecology. Proceedings of Workshop HW2 held at Birmingham UK July 1999 IAHS Press, Wallingford, pp 77–90Google Scholar
  32. Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol 31:361–369CrossRefGoogle Scholar
  33. Kampichler C, Wieland R, Calmé S, Weissenberger H, Arriaga-Weiss S (2010) Classification in conservation biology: a comparison of five machine-learning methods. Ecol Inform 5:441–450CrossRefGoogle Scholar
  34. Kemp JL, Harper DM, Crosa GA (1999) Use of ‘functional habitats’ to link ecology with morphology and hydrology in river rehabilitation. Aquat Conserv: Mar Freshwat Ecosyst 9:159–178CrossRefGoogle Scholar
  35. Knaepkens G, Bruyndoncx L, Bervoets L, Eens M (2002) The presence of artificial stones predicts the occurrence of the European bullhead (Cottus gobio) in a regulated lowland river in Flanders (Belgium). Ecol Freshwat Fish 11:203–206CrossRefGoogle Scholar
  36. Knaepkens G, Baekelandt K, Eens M (2006) Fish pass effectiveness for bullhead (Cottus gobio), perch (Perca fluviatilis) and roach (Rutilus rutilus) in a regulated lowland river. Ecol Freshwat Fish 15:20–29CrossRefGoogle Scholar
  37. Kuhn M (2008) Building predictive models in R using the caret package. J Stat Soft. http://www.jstatsoft.org/v28/i05/paper. Accessed 22 November 2008
  38. Langford TE, Hawkins SJ (1997) The distribution and abundance of three fish in relation to timber debris and mesohabitats in a lowland forest stream during autumn and winter. Limnetica 13:93–102Google Scholar
  39. Legalle M, Mastrorillo S, Santoul F, Céréghino R (2005a) Ontogenetic microhabitat shifts in the bullhead, Cottus gobio L., in a fast flowing stream. Internat Rev Hydrobiol 90:310–321CrossRefGoogle Scholar
  40. Legalle M, Santoul F, Figuerola J, Mastrorillo S, Céréghino R (2005b) Factors influencing the spatial distribution patterns of the bullhead (Cottus gobio L., Teleostei Cottidae): a multi-scale study. Biodivers Conserv 14:1319–1344CrossRefGoogle Scholar
  41. Liaw A, Wiener M (2002) Classification and regression by Random forest. R News 2:18–22Google Scholar
  42. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  43. Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931CrossRefGoogle Scholar
  44. Markovic D, Freyhof J, Wolter C (2012) Where are all the fish: potential of biogeographical maps to project current and future distribution patterns of freshwater species. PLoS ONE 7:e40530PubMedCentralPubMedCrossRefGoogle Scholar
  45. Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69CrossRefGoogle Scholar
  46. Meador M, McIntyre J, Pollock K (2003) Assessing the efficacy of single-pass backpack electrofishing to characterize fish community structure. Trans Am Fish Soc 132:39–46CrossRefGoogle Scholar
  47. Melcher AH, Lautsch E, Schmutz S (2012) Non-parametric methods—Tree and P-CFA—for the ecological evaluation and assessment of suitable aquatic habitats: a contribution to fish psychology. Psych Test Ass Mod 54:293–306Google Scholar
  48. Mouton AM, Schneider M, Depestele J, Goethals PLM, De Pauw N (2007) Fish habitat modelling as a tool for river management. Ecol Eng 29:305–315CrossRefGoogle Scholar
  49. Mouton AM, De Baets B, Goethals PLM (2010) Ecological relevance of performance criteria for species distribution models. Ecol Model 221:1995–2002CrossRefGoogle Scholar
  50. Mouton AM, Alcaraz-Hernández JD, De Baets B, Goethals PLM, Martínez-Capel F (2011) Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environ Model Software 26:615–622CrossRefGoogle Scholar
  51. Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261PubMedCrossRefGoogle Scholar
  52. Olden JD, Jackson DA (2002) A comparison of statistical approaches for modelling fish species distributions. Freshwat Biol 47:1976–1995CrossRefGoogle Scholar
  53. Olden JD, Jackson DA, Peres-Neto PR (2002) Predictive models of fish species distributions: a note on proper validation and chance predictions. Trans Am Fish Soc 131:329–336CrossRefGoogle Scholar
  54. Parasiewicz P (2001) MesoHABSIM: a concept for application of instream flow models in river restoration planning. Fisheries 26:6–13CrossRefGoogle Scholar
  55. Parasiewicz P (2007) The MesoHABSIM model revisited. River Res Appl 23:893–903CrossRefGoogle Scholar
  56. Parasiewicz P, Rogers J, Legros J, Wirth M (2007) Assessment and restoration of instream habitat of the Eightmile River in Connecticut: Developing a MesoHABSIM model. Report 62, p 65Google Scholar
  57. Parasiewicz P, Nestler J, Poff NL, Goodwin A (2008) Virtual reference river: a model for scientific discovery and reconciliation. In: Alonso MS, Rubio IM (eds) Ecological management: new research. Nova Science Publishers, Inc., New York, pp 189–198Google Scholar
  58. Parasiewicz P, Castelli E, Rogers JN, Plunkett E (2012a) Multiplex modeling of physical habitat for endangered freshwater mussels. Ecol Modell 228:10CrossRefGoogle Scholar
  59. Parasiewicz P, Ryan K, Vezza P, Comoglio C, Ballestero T, Rogers JN (2012b) Use of quantitative habitat models for establishing performance metrics in river restoration planning. Ecohydrology. doi: 10.1002/eco.1350 Google Scholar
  60. Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245CrossRefGoogle Scholar
  61. Pini Prato E, Comoglio C, Calles O (2011) A simple management tool for planning the restoration of river longitudinal connectivity at watershed level: priority indices for fish passes. J Appl Ichthyol 27:73–79CrossRefGoogle Scholar
  62. Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703CrossRefGoogle Scholar
  63. Regione Piemonte (2010) Proposta di piano regionale per la tutela e la conservazione degli ambienti e della fauna acquatica e l’esercizio della pesca. Regione Pimonte, TorinoGoogle Scholar
  64. Regione Piemonte (2007) Piano di Tutela delle Acque–Regional Water Protection Plan, Volume D.C.R. n. 117-10731. Torino, ItaliaGoogle Scholar
  65. Regione Valle d’Aosta (2008) Progetto di sperimentazione del DMV del gruppo C.V.A. Caratterizzazione Dora Baltea. Monografia 2008, Aosta, ItaliaGoogle Scholar
  66. Reunanen J (2003) Overfitting in making comparisons between variable selection methods. J Mach Learn Res 3:1371–1382Google Scholar
  67. Roussel JM, Bardonnet A (1996) Differences in habitat use by day and night for brown trout (Salmo trutta) and sculpin (Cottus gobio) in a natural brook: multivariate and multi-scale analyses. Cybium 20:45–53Google Scholar
  68. Sakamoto Y (1994) Categorical data analysis by AIC. In: Bozdogan H (ed) Proceedings of the first US/Japan conference on the frontiers of statistical modeling: an informational approach. Kluwer Academic Publishers, Dordrecht, pp 255–269CrossRefGoogle Scholar
  69. Siroky DS (2009) Navigating random forests and related advances in algorithmic modeling. Stat Surveys 3:147–163CrossRefGoogle Scholar
  70. Stehman SV (1997) Selecting and interpreting measures of thematic classification accuracy. Remote Sens Environ 62:77–89CrossRefGoogle Scholar
  71. Steyerberg EW, Harrell FE Jr, Borsboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF (2001) Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 54:774–781PubMedCrossRefGoogle Scholar
  72. Thomas JA, Bovee KD (1993) Application and testing of a procedure to evaluate transferability of habitat suitability criteria. Regul Rivers: Res Manage 8:285–294CrossRefGoogle Scholar
  73. Tirelli T, Pozzi L, Pessani D (2009) Use of different approaches to model presence/absence of Salmo marmoratus in Piedmont (Northwestern Italy). Ecol Inform 4:234–242CrossRefGoogle Scholar
  74. Tomlinson ML, Perrow (2003) Ecology of the bullhead. Conserving Natura 2000 Rivers Ecology. English Nature, PeterboroughGoogle Scholar
  75. Van Liefferinge C, Seeuws P, Meire P, Verheyen RF (2005) Microhabitat use and preferences of the endangered Cottus gobio in the River Voer, Belgium. J Fish Biol 67:897–909CrossRefGoogle Scholar
  76. Vaughan IP, Ormerod SJ (2005) The continuing challenges of testing species distribution models. J Appl Ecol 42:720–730CrossRefGoogle Scholar
  77. Vezza P, Comoglio C, Rosso M, Viglione A (2010) Low flows regionalization in north-western Italy. Water Resour Manage 24(14):4049–4074CrossRefGoogle Scholar
  78. Vezza P, Parasiewicz P, Rosso M, Comoglio C (2012a) Defining minimum environmental flows at regional scale: application of mesoscale habitat models and catchments classification. River Res Appl 28:675–792CrossRefGoogle Scholar
  79. Vezza P, Parasiewicz P, Spairani M, Comoglio C (2012b) Meso-scale habitat modelling in Alpine high gradient streams. In: Mader H, Kraml J (eds) Proceeding of the 9th Eco-hydraulics Symposium ISE 2012. Austria, ViennaGoogle Scholar
  80. Vezza P, Parasiewicz P, Spairani M, Comoglio C (2013) Habitat modelling in high gradient streams: the meso-scale approach and application. Ecol Appl In pressGoogle Scholar
  81. Wells BJ, Yu C, Koroukian S, Kattan MW (2011) Comparison of variable selection methods for the generation of parsimonious prediction models for use in clinical practice. In: SMDM (ed) Proceedings of the 33rd Annual Meeting of the Society for Medical Decision Making. SMDM, ChicagoGoogle Scholar
  82. Xu L, Zhang W-J (2001) Comparison of different methods for variable selection. Anal Chim Acta 446:475–481CrossRefGoogle Scholar
  83. Zerunian S (2002a) Condannati all’estinzione? Biodiversità, biologia, minacce e strategie di conservazione dei Pesci d’acqua dolce indigeni in Italia. Edagricole, BolognaGoogle Scholar
  84. Zerunian S (2002b) Iconography of Italian inland water Fishes. Tipolitografia FG—Savignano s/P (Mo), RomaGoogle Scholar
  85. Zerunian S (2007) Problematiche di conservazione dei Pesci d’acqua dolce italiani. Biologia Ambientale 21:49–55Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Paolo Vezza
    • 1
    • 2
  • P. Parasiewicz
    • 3
    • 4
  • O. Calles
    • 2
    • 5
  • M. Spairani
    • 6
  • C. Comoglio
    • 2
  1. 1.Institut d’Investigació per a la Gestió Integrada de Zones CostaneresUniversitat Politècnica de ValènciaGrau de Gandia (Valencia)Spain
  2. 2.Department of Environment, Land and Infrastructure EngineeringPolitecnico di TorinoTurinItaly
  3. 3.Rushing Rivers InstituteAmherstUSA
  4. 4.S. Sakowicz Inland Fisheries InstituteZabieniecPoland
  5. 5.Department of BiologyKarlstad UniversityKarlstadSweden
  6. 6.FLUME s.r.lAostaItaly

Personalised recommendations