Aquatic Sciences

, Volume 74, Issue 4, pp 659–682 | Cite as

Physics of seasonally ice-covered lakes: a review

  • Georgiy Kirillin
  • Matti Leppäranta
  • Arkady Terzhevik
  • Nikolai Granin
  • Juliane Bernhardt
  • Christof Engelhardt
  • Tatyana Efremova
  • Sergey Golosov
  • Nikolai Palshin
  • Pavel Sherstyankin
  • Galina Zdorovennova
  • Roman Zdorovennov
Overview Article

Abstract

Recently, the attention to the ice season in lakes has been growing remarkably amongst limnological communities, in particular, due to interest in the response of mid- and high-latitude lakes to global warming. We review the present advances in understanding the governing physical processes in seasonally ice-covered lakes. Emphasis is placed on the general description of the main physical mechanisms that distinguish the ice-covered season from open water conditions. Physical properties of both ice cover and ice-covered water column are considered. For the former, growth and decay of the seasonal ice, its structure, mechanical and optical properties are discussed. The latter subject deals with circulation and mixing under ice. The relative contribution of the two major circulation drivers, namely heat release from sediment and solar heating, is used for classifying the typical circulation and mixing patterns under ice. In order to provide a physical basis for lake ice phenology, the heat transfer processes related to formation and melting of the seasonal ice cover are discussed in a separate section. Since the ice-covered period in lakes remains poorly investigated to date, this review aims at elaborating an effective strategy for future research based on modern field and modeling methods.

Keywords

Physical limnology Freezing lakes Ice physics Lake hydrodynamics Review 

References

  1. Adrian R, O’Reilly C, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297. doi:10.4319/lo.2009.54.6_part_2.2283 PubMedGoogle Scholar
  2. Anderson DL (1961) Growth rate of sea ice. J Glaciol 3(30):1170–1172Google Scholar
  3. Andreas EL (1998) The atmospheric boundary layer over polar marine surfaces. In: Leppäranta M (ed) The physics of ice-covered seas, v 2. Helsinki University Press, Helsinki, pp 715–773Google Scholar
  4. Arst H (2003) Optical properties and remote sensing of multicomponental water bodies. Springer, ChichesterGoogle Scholar
  5. Arst H, Erm A, Leppäranta M, Reinart A (2006) Radiative characteristics of ice-covered freshwater and brackish water bodies. Proc Est Acad Sci Geol 55:3–23Google Scholar
  6. Ashton GD (1980) Freshwater ice growth, motion and decay. In: Colbeck S (ed) Dynamics of snow and ice masses, pp 261–304Google Scholar
  7. Ashton G (ed) (1986) River and lake ice engineering. Water Resources Publications, LittletonGoogle Scholar
  8. Assel RA, Herche LH (2000) Coherence of long-term lake ice records. Verh Int Verein Limnol 27:2789–2792Google Scholar
  9. Baehr MM, DeGrandpre MD (2002) Under-ice CO2 and O2 variability in a freshwater lake. Biogeochemistry 61:95–113Google Scholar
  10. Barica J, Mathias JA (1979) Oxygen depletion and winterkill risk in small prairie lakes under extended ice cover. J Fish Res Board Can 36:980–986Google Scholar
  11. Bates RE, Bilello MA (1966) Defining the cold regions of the Northern Hemisphere. TR 178. US Army Cold Regions Research and Engineering Laboratory, HanoverGoogle Scholar
  12. Bengtsson L (1986) Dispersion in ice-covered lakes. Nordic Hydrol 17:151–170Google Scholar
  13. Bengtsson L (1996) Mixing in ice-covered lakes. Hydrobiologia 322:91–97Google Scholar
  14. Bengtsson L (2011) Ice-covered lakes: environment and climate-required research. Hydrol Process 25:2767–2769. doi:10.1002/hyp.8098 Google Scholar
  15. Bernhardt J, Engelhardt C, Kirillin G, Matschullat J (2011) Lake ice phenology in Berlin–Brandenburg from 1947–2007: observations and model hindcasts. Clim Change. doi:10.1007/s10584-011-0248-9
  16. Beutel MW (2001) Oxygen consumption and ammonia accumulation in the hypolimnion of Walker Lake, Nevada. Hydrobiologia 466:107–117Google Scholar
  17. Boehrer B, Fukuyama R, Chikita K (2008) Stratification of very deep, thermally stratified lakes. Geophys Res Lett 35:L16405. doi:10.1029/2008GL034519 Google Scholar
  18. Boudreau BP, Jørgensen BB (2001) The benthic boundary layer: transport processes and biogeochemistry. Oxford University Press, USAGoogle Scholar
  19. Boylen CW, Brock TD (1973) Bacterial decomposition processes in Lake Wingra sediments during winter. Limnol Oceanogr 18:628–634Google Scholar
  20. Brekhovskikh VF, Gashkina NA, Kremenetskaya ER, Lomova DV (2003) Oxygen regime of the Mozhaisk Reservoir during under ice period. Rus Meteorol Hydrol 1:103–109 (in Russian)Google Scholar
  21. Bryant LD, Lorrai C, McGinnis DF, Brand A, Wüest A, Little JC (2010) Variable sediment oxygen uptake in response to dynamic forcing. Limnol Oceanogr 55:950–964Google Scholar
  22. Burda NY (1999) Computer simulation for Ladoga Lake ice dynamics based on remotely sensed data. Int Geosci Remote Sens Symp 2:937–939Google Scholar
  23. Carmack EC, Farmer DM (1982) Cooling processes in deep, temperate lakes: a review with examples from two lakes in British Columbia. J Mar Res 40:85–111Google Scholar
  24. Carmack E, Weiss R (1991) Convection in Lake Baikal: an example of thermobaric instability. In: Chu PC, Gascard JC (eds) Deep convection and deep water formation in the oceans. Elsevier, Amsterdam, pp 215–228Google Scholar
  25. Catalan J, Ventura M, Brancelj A, Granados I, Thies H, Nickus U, Korhola A, Lotter AF, Barbieri A, Stuchlik E, Lien L, Bitusik P, Buchaca T, Camarero L, Goudsmit GH, Kopacek J, Lemcke G, Livingstone DM, Müller B, Rautio M, Sisko M, Sorvari S, Sporka F, Strunecky O, Toro M (2002) Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J Paleolimnol 28:25–46Google Scholar
  26. Colman JA, Armstrong DE (1983) Horizontal diffusivity in a small, ice-covered lake. Limnol Oceanogr 28:1020–1026Google Scholar
  27. Crawford G, Collier R (2007) Long-term observations of deepwater renewal in Crater Lake, Oregon. Hydrobiologia 574:47–68Google Scholar
  28. Croley TE II, Assel RA (1994) A one-dimensional ice thermodynamics model for the Laurentian Great Lakes. Water Resour Res 30(3):625–639. doi:10.1029/93WR03415 Google Scholar
  29. Duguay CR, Pultz TJ, Lafleur PM, Drai D (2002) RADARSAT backscatter characteristics of ice growing on shallow sub-Arctic lakes, Churchill, Manitoba, Canada. Hydrol Process 16(8):1631–1644Google Scholar
  30. Duguay CR, Flato GM, Jeffries MO, Ménard P, Morris K, Rouse WR (2003) Ice-cover variability on shallow lakes at high latitudes: model simulations and observations. Hydrol Process 17:3464–3483Google Scholar
  31. Duguay CR, Prowse TD, Bonsal BR, Brown RD, Lacroix MP, Menard P (2006) Recent trends in Canadian lake ice cover. Hydrol Process 20:781–801Google Scholar
  32. Efremova T, Palshin N (2011) Ice phenomena terms on the water bodies of Northwestern Russia. Rus Meteorol Hydrol 36(8):559–565Google Scholar
  33. Ellis CR, Stefan HG (1989) Oxygen demand in ice covered lakes as it pertains to winter aeration. Water Resour Bull 25:1169–1176Google Scholar
  34. Farmer DM (1975) Penetrative convection in the absence of mean shear. Q J R Meteorol Soc 101:869–891. doi:10.1002/qj.49710143011 Google Scholar
  35. Farmer DM, Carmack E (1981) Wind mixing and restratification in a lake near the temperature of maximum density. J Phys Oceanogr 11:1516–1533Google Scholar
  36. Forrest AL, Laval BE, Pieters R, Lim DSS (2008) Convectively driven transport in temperate lakes. Limnol Oceanogr 53:2321–2332Google Scholar
  37. George G (ed) (2010) The impact of climate change on European lakes, 1st edn. Springer, BerlinGoogle Scholar
  38. Gill AE (1982) Atmosphere–ocean dynamics. Academic Press, NYGoogle Scholar
  39. Golosov S, Maher OA, Schipunova E, Terzhevik A, Zdorovennova G, Kirillin G (2007) Physical background of the development of oxygen depletion in ice-covered lakes. Oecologia 151:331–340PubMedGoogle Scholar
  40. Golosov S, Terzhevik A, Zverev I, Kirillin G, Engelhardt C (2012) Climate change impact on thermal and oxygen regime of shallow lakes. Tellus A 64:17264. doi:10.3402/tellusa.v64i0.17264 Google Scholar
  41. Götzinger G (1909) Studien über das Eis des Lunzer Unter-und Obersees. Int Rev ges Hydrobiol Hydrogr 2:386–396Google Scholar
  42. Gow AJ (1986) Orientation textures in ice sheets of quietly frozen lakes. J Crystal Growth 74:247–258Google Scholar
  43. Gow AJ, Govoni JW (1983) Ice growth on post pond, 1973–1982. Cold Regions Research and Engineering Laboratory report 83–4Google Scholar
  44. Granin N, Gnatovskiy RY, Zhdanov A, Zehanovsky VV, Gorbunova LA (1999a) Convection and mixing under the ice of Lake Baikal. Sibirskij Ecologicheskij Zhurnal 6:597–600 (in Russian)Google Scholar
  45. Granin N, Jewson D, Gnatovsky RY, Levin LA, Zhdanov AA, Averin AI, Gorbunova LA, Tcekhanovsky VV, Doroschenko LF, Min’ko NP, Grachev MA (1999b) Turbulent mixing in the water layer just below the ice and its role in development of diatomic algae in Lake Baikal. Dokl Acad Sci USSR 366:835–839 (in Russian)Google Scholar
  46. Greenbank J (1945) Limnological conditions in ice-covered lakes, especially as related to winter-kill of fish. Ecol Monogr 15:343–391Google Scholar
  47. Haapala J, Leppäranta M (1997) The Baltic Sea ice season in changing climate. Boreal Env Res 2:93–108Google Scholar
  48. Halsey TG (1968) Autumnal and over-winter limnology of three small eutrophic lakes with particular reference to experimental circulation and trout mortality. J Fish Res Board Can 25:81–99Google Scholar
  49. Hamblin PF, Carmack EC (1990) On the rate of heat transfer between a lake and an ice sheet. Cold Reg Sci Technol 18:173–182Google Scholar
  50. Hargrave BT (1969) Similarity of oxygen uptake by benthic communities. Limnol Oceanogr 14:801–805Google Scholar
  51. Higashino M, Gantzer CJ, Stefan HG (2004) Unsteady diffusional mass transfer at the sediment/water interface: theory and significance for SOD measurement. Water Res 38:1–12PubMedGoogle Scholar
  52. Hohmann R, Kipfer R, Peeters F, Piepke G, Imboden DM, Shimaraev MN (1997) Processes of deep-water renewal in Lake Baikal. Limnol Oceanogr 42:841–855Google Scholar
  53. Huang WF, Li Z, Han H, Niu F, Lin Z, Leppäranta M (2012) Structural analysis of thermokarst lake ice in Beiluhe Basin, Qinghai–Tibet Plateau. Cold Reg Sci Technol 72:33–42Google Scholar
  54. Hutchinson GE, Löffler H (1956) The thermal classification of lakes. Proc Nat Acad Sci USA 42:84–86PubMedGoogle Scholar
  55. Huttula T, Pulkkanen M, Arkhipov B, Leppäranta M, Solbakov V, Shirasawa K, Salonen K (2010) Modelling circulation in an ice-covered Lake. Est J Earth Sci 59:298–309Google Scholar
  56. IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, CambridgeGoogle Scholar
  57. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds), Cambridge University Press, Cambridge, UKGoogle Scholar
  58. Jakkila J, Leppäranta M, Kawamura T, Shirasawa K, Salonen K (2009) Radiation transfer and heat budget during the ice season in Lake Pääjärvi, Finland. Aquat Ecol 43:681–692Google Scholar
  59. Jensen OP, Benson BJ, Magnuson JJ, Card VM, Futter MN, Soranno PA, Stewart KM (2007) Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnol Oceanogr 52:2013–2026Google Scholar
  60. Jewson D, Granin N, Zhdanov A, Gnatovsky R (2009) Effect of snow depth on under-ice irradiance and growth of Aulacoseira baicalensis in Lake Baikal. Aquat Ecol 43:673–679. doi:10.1007/s10452-009-9267-2 Google Scholar
  61. Jonas T, Terzhevik AY, Mironov DV, Wüest A (2003) Radiatively driven convection in an ice-covered lake investigated by using temperature microstructure technique. J Geophys Res 108(C6):3183. doi:10.1029/2002JC001316 Google Scholar
  62. Karetnikov S, Naumenko MA (2008) Recent trends in Lake Ladoga ice cover. Hydrobiologia 599:41–48Google Scholar
  63. Kärkäs E (2000) The ice season of Lake Pääjärvi, southern Finland. Geophysica 36:85–94Google Scholar
  64. Kelley DE (1997) Convection in ice-covered lakes: effects on algal suspension. J Plankton Res 19(12):1859–1880. doi:10.1093/plankt/19.12.1859 Google Scholar
  65. Kenney B (1996) Physical limnological processes under ice. Hydrobiologia 322:85–90Google Scholar
  66. Kirillin G (2010) Modelling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes. Boreal Env Res 15:279–293Google Scholar
  67. Kirillin G, Terzhevik A (2011) Thermal instability in freshwater lakes under ice: effect of salt gradients or solar radiation? Cold Reg Sci Technol 65:184–190. doi:10.1016/j.coldregions.2010.08.010 Google Scholar
  68. Kirillin G, Engelhardt C, Golosov S, Hintze T (2009) Basin-scale internal waves in the bottom boundary layer of ice-covered Lake Müggelsee, Germany. Aquat Ecol 43:641–651. doi:10.1007/s10452-009-9274-3 Google Scholar
  69. Kirillin G, Rizk W, Leppäranta M (2012) Convective mixing by solar radiation under lake ice. In: Li Z, Lu P (eds) Ice research for a sustainable environment. Proceedings of 21st IAHR international symposium on ice, Dalian University of Technology Press, Dalian, China, pp 1201–1211. ISBN: 978-7-89437-020-4. http://www.iahr.net/site/e_library/. Accessed Aug 2012
  70. Kondratyev KYa, Filatov N (eds) (1999) Limnology and remote sensing. A contemporary approach. Springer-Praxis, ChichesterGoogle Scholar
  71. Korhonen J (2006) Long-term changes in lake ice cover in Finland. Nordic Hydrol 37:347–363Google Scholar
  72. Kouraev AV, Shimaraev MN, Buharizin PI, Naumenko MA, Crétaux JF, Mognard N, Legrésy B, Rémy F (2008) Ice and snow cover of continental water bodies from simultaneous radar altimetry and radiometry observations. Surv Geophys 29:271–295. doi:10.1007/s10712-008-9042-2 Google Scholar
  73. Koźmiński Z, Wisznewski J (1934) Über die Vorfrühlingthermik der Wigry-Seen. Archiv f Hydrobiol 28:198–235Google Scholar
  74. Lei R, Leppäranta M, Erm A, Jaatinen E, Pärn O et al (2011) Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009. Est J Earth Sci 60(1):50–64Google Scholar
  75. Lei R, Leppäranta M, Cheng B, Heil P, Li Z (2012) Changes in ice-season characteristics of a European Arctic lake from 1964 to 2008. Clim Change. doi:10.1007/s10584-012-0489-2 (online first)Google Scholar
  76. Leppäranta M (1983) A growth model for black ice, snow ice and snow thickness in subarctic basins. Nordic Hydrol 14:59–70Google Scholar
  77. Leppäranta M (1993) A review of analytical models of sea-ice growth. Atmos Ocean 31:123–138Google Scholar
  78. Leppäranta M (2009) Modelling of formation and decay of lake ice. In: George G (ed) Climate change impact on European lakes. Springer, Netherlands, pp 63–83Google Scholar
  79. Leppäranta M (2011) The drift of sea ice, 2nd edn. Springer-Praxis, HeidelbergGoogle Scholar
  80. Leppäranta M, Kosloff P (2000) The thickness and structure of Lake Pääjärvi ice. Geophysica 36:233–248Google Scholar
  81. Leppäranta M, Lewis JE (2007) Observations of Ice Surface Temperature and Thickness in the Baltic Sea. Int J Remote Sens 28(17):3963–3977. doi:10.1080/01431160601075616 Google Scholar
  82. Leppäranta M, Wang K (2008) The ice cover on small and large lakes: scaling analysis and mathematical modelling. Hydrobiologia 599:183–189Google Scholar
  83. Leppäranta M, Tikkanen M, Virkanen J (2003) Observations of ice impurities in some Finnish lakes. Proc Est Acad Sci Chem 52:59–75Google Scholar
  84. Leppäranta M, Terzhevik A, Shirasawa K (2010) Solar radiation and ice melting in Lake Vendyurskoe, Russian Karelia. Hydrol Res 41:50–62Google Scholar
  85. Li Z, Huang W-F, Jia Q, Leppäranta M (2011) Distributions of crystals and gas bubbles in reservoir ice during growth period. Water Sci Eng 4(2):204–211. doi:10.3882/j.issn.1674-2370.2011.02.008 Google Scholar
  86. Likens GE, Ragotzkie RA (1965) Vertical water motions in a small ice-covered lake. J Geophys Res 70:2333–2344. doi:196510.1029/JZ070i010p02333 Google Scholar
  87. Likens GE, Ragotzkie RA (1966) Rotary circulation of water in an ice-covered lake. Verh Int Ver Theor Angew Limnol 16:126–133Google Scholar
  88. Lilly DK (1968) Models of cloud-topped mixed layers under a strong inversion. Q J R Meteorol Soc 94(401):292–309Google Scholar
  89. Livingstone DM (2000) Large scale climatic forcing detected in historical observations of lake-ice break-up. Verh Int Ver Theor Angew Limnol 27(5):2775–2783Google Scholar
  90. Magnuson JJ, Robertson DM, Benson BJ, Wynne RH, Livingstone DM, Arai T, Assel RA, Barry RG, Card V, Kuusisto E, Granin NG, Prowse TD, Stewart KM, Vuglinski VS (2000) Historical trends in lake and river ice cover in the northern hemisphere. Science 289:1743–1746 (errata 2001 Science 291:254)PubMedGoogle Scholar
  91. Malm J (1998) Bottom buoyancy layer in an ice-covered lake. Water Resour Res 34:2981–2993Google Scholar
  92. Malm J (1999) Some properties of currents and mixing in a shallow ice-covered lake. Water Resour Res 35:221–232Google Scholar
  93. Malm J, Terzhevik A, Bengtsson L, Boyarinov P, Glinsky A, Palshin N, Petrov M (1997) Temperature and salt content regimes in three shallow ice-covered lakes. 2. Heat and mass fluxes. Nordic Hydrol 28:129–152Google Scholar
  94. Malm J, Bengtsson L, Terzhevik A, Boyarinov P, Glinsky A, Palshin N, Petrov M (1998) Field study on currents in a shallow, ice-covered lake. Limnol Oceanogr 43:1669–1679Google Scholar
  95. Margesin R, Schinner F (eds) (1999) Cold-adapted organisms. Springer, HeidelbergGoogle Scholar
  96. Marisol F, Sattler B, Psenner R, Catalan J (1995) Highly active microbial communities in the ice and snow cover of high mountain lakes. Appl Environ Microbiol 61:2394–2401Google Scholar
  97. Marszelewski W, Skowron R (2006) Ice cover as an indicator of winter air temperature changes: case study of the Polish Lowland lakes. Hydrol Sciences J 51:336–349Google Scholar
  98. Matzinger A, Müller B, Niederhauser P, Schmid M, Wüest A (2010) Hypolimnetic oxygen consumption by sediment-based reduced substances in former eutrophic lakes. Limnol Oceanogr 55:2073–2084Google Scholar
  99. Maykut GA, Untersteiner N (1971) Some results from a time-dependent, thermodynamic model of sea ice. J Geophys Res 76:1550–1575Google Scholar
  100. McPhee M (2008) Air–ice–ocean interaction: turbulent boundary layer exchange processes. Springer, BerlinGoogle Scholar
  101. Michel B (1978) Ice mechanics. Laval University Press, Quebec CityGoogle Scholar
  102. Michel B, Ramseier RO (1971) Classification of river and lake ice. Can Geotech J 8:36–45Google Scholar
  103. Mironov D, Terzhevik A, Kirillin G, Jonas T, Malm J, Farmer D (2002) Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model. J Geophys Res 107(C4). doi:10.1029/2001JC000892
  104. Mortimer C, Mackereth F (1958) Convection and its consequences in ice-covered lakes. Verh Int Ver Limnol 13:923–932Google Scholar
  105. Mullen PC, Warren SG (1988) Theory of optical properties of lake ice. J Geophys Res 93((D7)):8403–8414Google Scholar
  106. Müller B, Bryant LD, Matzinger A, Wüest A (2012) Hypolimnetic oxygen depletion in eutrophic lakes. Env Sci Technol. doi:10.1021/es301422r Google Scholar
  107. Oveisy A, Boegman L, Imberger J (2012) Three-dimensional simulation of lake and ice dynamics during winter. Limnol Oceanogr 57:43–57Google Scholar
  108. Palosuo E (1965) Frozen slush on lake ice. Geophysica 9:36–45Google Scholar
  109. Petrov M, Terzhevik A, Zdorovennov R, Zdorovennova G (2006) The thermal structure of a shallow lake in early winter. Water Resour 33:135–143. doi:10.1134/S0097807806020035 Google Scholar
  110. Petrov M, Terzhevik A, Zdorovennov R, Zdorovennova G (2007) Motion of water in an ice-covered shallow lake. Water Resour 34(2):113–122. doi:10.1134/S0097807807020017 Google Scholar
  111. Phillips OM (1970) On flows induced by diffusion in a stably stratified fluid. Deep Sea Res Oceanogr Abs 17:435–443. doi:10.1016/0011-7471(70)90058-6 Google Scholar
  112. Pieters R, Lawrence GA (2009) Effect of salt exclusion from lake ice on seasonal circulation. Limnol Oceanogr 54:401–412Google Scholar
  113. Pivovarov (1973) Thermal conditions in freezing lakes and rivers. Wiley, New YorkGoogle Scholar
  114. Puklakov VV, Edel’shtein KK, Kremenetskaya ER, Gashkina NA (2002) Water self purification in the Mozhaisk Reservoir in winter. Water Resour 29(6):655–664Google Scholar
  115. Rahm L (1985) The thermally forced circulation in a small, ice-covered lake. Limnol Oceanogr 30:1122–1128Google Scholar
  116. Reinart A, Arst H, Nõges P, Nõges T (2000) Comparison of euphotic layer criteria in lakes. Geophysica 36:141–159Google Scholar
  117. Robertson DM, Ragotszkie RA, Magnuson JJ (1992) Lake ice records used to detect historical and future climatic change. Clim Change 2:407–427Google Scholar
  118. Salonen K, Leppäranta M, Viljanen M, Gulati R (2009) Perspectives in winter limnology: closing the annual cycle of freezing lakes. Aquat Ecol 43:609–616Google Scholar
  119. Saloranta T (2000) Modeling the evolution of snow, snow ice and ice in the Baltic Sea. Tellus A 52:93–108Google Scholar
  120. Saloranta T, Andersen T (2007) MyLake—a multi-year lake simulation model code suitable for uncertainty and sensitivity analysis simulations. Ecol Model 207(1):45–60Google Scholar
  121. Schmid M, Budnev NM, Granin NG, Sturm M, Schurter M, Wüest A (2008) Lake Baikal deepwater renewal mystery solved. Geophys Res Lett 35:L09605. doi:10.1029/2008GL033223 Google Scholar
  122. Sherstyankin PP (1975) The experimental investigations of under ice light field of Lake Baikal. Nauka, Moscow (in Russian)Google Scholar
  123. Sherstyankin PP (1992) Optical observations on front generation in Lake Baikal. Dokl Acad Sci Russ 356:366–370 (in Russian)Google Scholar
  124. Shimaraev M, Granin N (1991) Temperature stratification and the mechanism of convection in Lake Baikal. Dokl Acad Sci Russ 321:381–385 (in Russian)Google Scholar
  125. Shimaraev MN, Granin NG, Domysheva VM, Zhdanov AA, Golobokova LP, Gnatovskii RY, Tsekhanovskii VV, Blinov VV (2003) Water exchange between bed depressions in Baikal. Water Resour 30:623–626. doi:10.1023/B:WARE.0000007587.23858.ab Google Scholar
  126. Shimaraev MN, Gnatovskii RY, Blinov VV, Ivanov VG (2011) Renewal of deep waters of Lake Baikal revisited. Dokl Earth Sci 438:652–655. doi:10.1134/S1028334X11050096 Google Scholar
  127. Shirasawa K, Leppäranta M, Saloranta T, Polomoshnov A, Surkov G, Kawamura T (2005) The thickness of landfast ice in the Sea of Okhotsk. Cold Reg Sci Technol 42:25–40Google Scholar
  128. Shirasawa K, Leppäranta M, Kawamura T, Ishikawa M, Takatsuka T (2006) Measurements and modelling of the water—ice heat flux in natural waters. In: Proc of the 18th IAHR international symposium on ice, Hokkaido University, Sapporo, Japan, pp 85–91. http://www.riverice.ualberta.ca/IAHR%20Proc/. Accessed Aug 2012
  129. Shuter BJ, Finstad AG, Helland IP, Zweimüller I, Hölker F (2012) The role of winter phenology in shaping the ecology of freshwater fish and their sensitivities to climate change (this issue)Google Scholar
  130. Simojoki H (1940) Über die Eisverhältnisse der Binnenseen Finnlands. PhD thesis, University of HelsinkiGoogle Scholar
  131. Stefan J (1891) Über die Theorie der Eisbildung, insbesondere über Eisbildung im Polarmeere. Annalen der Physik 3rd Ser 42:269–286Google Scholar
  132. Stigebrandt A (1978) Dynamics of an ice covered lake with through-flow. Nordic Hydrol 9:19–244Google Scholar
  133. Sturova IV (2007) Effect of ice cover on oscillations of fluid in a closed basin. Izv Atmos Ocean Phys 43(1):112–118. doi:10.1134/S0001433807010136 Google Scholar
  134. Svensson U, Larsson R (1980) A one-dimensional numerical model study of some basic features of the flow in ice-covered lakes. J Hydraul Res 18:251–267Google Scholar
  135. Terzhevik A, Golosov S, Palshin N, Mitrokhov A, Zdorovennov R, Zdorovennova G, Kirillin G, Shipunova E, Zverev I (2009) Some features of the thermal and dissolved oxygen structure in boreal, shallow ice-covered Lake Vendyurskoe, Russia. Aquat Ecol 43(3):617–627. doi:10.1007/s10452-009-9288-x Google Scholar
  136. Terzhevik AY, Palshin NI, Golosov SD, Zdorovennov RE, Zdorovennova GE, Mitrokhov AV, Potakhin MS, Shipunova EA, Zverev IS (2010) Hydrophysical aspects of oxygen regime formation in a shallow ice-covered lake. Water Resour 37:662–673. doi:10.1134/S0097807810050064 Google Scholar
  137. Thomas D, Dieckmann GS (eds) (2009) Sea ice. Wiley, New YorkGoogle Scholar
  138. Verescagin G (1925) A selection of works from Lake Baikal Expedition. Dokl Acad Sci SSSR 12:161–164 (in Russian)Google Scholar
  139. Vincent WF, Layborn-Parry J (2008) Polar lakes and rivers. Limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, NYGoogle Scholar
  140. Wake A, Rumer RR (1983) Great lakes ice dynamics simulation. J Waterway Port Coastal Ocean Eng 109:86–102Google Scholar
  141. Walsh SE, Vavrus SJ, Foley JA, Fisher VA, Wynne RH, Lenters JD (1998) Global patterns of lake ice phenology and climate: Model simulations and observations. J Geophys Res 103(D22):28825–28837. doi:10.1029/98JD02275 Google Scholar
  142. Wang C, Shirasawa K, Leppäranta M, Ishikawa M, Huttunen O, Takatsuka T (2005) Solar radiation and ice heat budget during winter 2002–2003 in Lake Pääjärvi, Finland. Verh Int Verein Limnol 29:414–417Google Scholar
  143. Wang K, Leppäranta M, Reinart A (2006) Modeling ice dynamics in Lake Peipsi. Verh Int Verein Limnol 29:1443–1446Google Scholar
  144. Wang J, Bai X, Hu H, Clites A, Colton M, Lofgren B (2012) Temporal and spatial variability of great lakes ice cover, 1973–2010*. J Clim 25:1318–1329Google Scholar
  145. Weeks WF (1998) Growth conditions and structure and properties of sea ice. In: Leppäranta M (ed) The physics of ice-covered seas, v 1. Helsinki University Press, Helsinki, pp 25–104Google Scholar
  146. Weiss RF, Carmack EC, Koropalov VM (1991) Deep-water renewal and biological production in Lake Baikal. Nature 349:665–669. doi:10.1038/349665a0 Google Scholar
  147. Welch HE, Bergmann MA (1985) Water circulation in small arctic lakes in winter. Can J Fish Aquat Sci 42:506–520Google Scholar
  148. Welch HE, Dillon PJ, Sreedharan A (1976) Factors affecting winter respiration in Ontario lakes. J Fish Res Board Can 33:1809–1815Google Scholar
  149. Wüest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Annu Rev Fluid Mech 35:373–412. doi:10.1146/annurev.fluid.35.101101.161220 Google Scholar
  150. Wüest A, Ravens TM, Granin NG, Kocsis O, Schurter M, Sturm M (2005) Cold intrusions in Lake Baikal: direct observational evidence for deep-water renewal. Limnol Oceanogr 50:184–196Google Scholar
  151. Wunsch C (1970) On oceanic boundary mixing. Deep Sea Res Oceanogr Abs 17:293–301. doi:10.1016/0011-7471(70),90022-7 Google Scholar
  152. Yang Y, Leppäranta M, Cheng B, Li Z et al (2012) Numerical modelling of snow and ice thicknesses in Lake Vanajavesi, Finland. Tellus A 64:17202. doi:10.3402/tellusa.v64i0.17202 Google Scholar
  153. Zdorovennova G (2009) Spatial and temporal variations of the water-sediment thermal structure in shallow ice-covered Lake Vendyurskoe (Northwestern Russia). Aquat Ecol 43:629–639. doi:10.1007/s10452-009-9277-0 Google Scholar
  154. Zdorovennov RE, Zdorovennova GE, Palshin NI, Terzhevik AY (2011) Variation of thermal and oxygen regimes in shallow lake in winter. Transactions of KRC of RAS 4:57–63 (in Russian)Google Scholar
  155. Zeikus JG, Winfrey MR (1976) Temperature limitation of methanogenesis in aquatic sediments. Appl Environ Microbiol 31:99–107PubMedGoogle Scholar
  156. Zhdanov AA, Granin NG, Shimaraev MN (2001) The generation mechanism of under-ice currents in Lake Baikal. Dokl Earth Sci 377A:329–332Google Scholar
  157. Zilitinkevich SS (ed) (1991) Modeling air–lake interaction: physical background. Springer, BerlinGoogle Scholar
  158. Zubov NN (1945) L’dy Arktiki. Izdatelstvo Glavsevmorputi, Moscow (in Russian). English translation: Zubov NN. (1963) Arctic Ice. Naval Oceanographic Office. Washington DC, USA. http://openlibrary.org/books/OL5931644M/Arctic_ice. Accessed Aug 2012
  159. Zyryanov VN (2011) Under-ice seiches. Water Resour 38:261–273. doi:10.1134/S0097807811020163 Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  • Georgiy Kirillin
    • 1
  • Matti Leppäranta
    • 2
  • Arkady Terzhevik
    • 3
  • Nikolai Granin
    • 5
  • Juliane Bernhardt
    • 1
  • Christof Engelhardt
    • 1
  • Tatyana Efremova
    • 3
  • Sergey Golosov
    • 4
  • Nikolai Palshin
    • 3
  • Pavel Sherstyankin
    • 5
  • Galina Zdorovennova
    • 3
  • Roman Zdorovennov
    • 3
  1. 1.Department of EcohydrologyLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  3. 3.Laboratory of HydrophysicsNorthern Water Problem Institute, Karelian Scientific Centre of Russian Academy of SciencesPetrozavodskRussia
  4. 4.Department of Hydrology, Institute of LimnologyRussian Academy of SciencesSaint PetersburgRussia
  5. 5.Department of Hydrology and Hydrophysics, Limnological InstituteSiberian Branch of Russian Academy of SciencesIrkutskRussia

Personalised recommendations