Advertisement

Aquatic Sciences

, Volume 74, Issue 3, pp 555–570 | Cite as

Effects of nutrient availability and temperature on phytoplankton development: a case study from large lakes south of the Alps

  • Nico SalmasoEmail author
  • Fabio Buzzi
  • Letizia Garibaldi
  • Giuseppe Morabito
  • Marco Simona
Research Article

Abstract

This work investigated the combined effects of nutrient availability and temperature on phytoplankton in large and deep lakes south of the Alps (lakes Garda, Iseo, Como, Lugano and Maggiore). The more eutrophic basins (Lugano and Iseo) showed a higher presence of cyanobacteria, green algae (Chlorophyta and Charophyta) and dinoflagellates (Dinophyta). Besides these two water bodies, high biomasses of cyanobacteria were recorded also in the oligo-mesotrophic Lake Garda. The development of these algal groups during the growing season showed a strong dependence on the surface spring availability of SRP, which, in turn, was related to winter climatic oscillations, deep mixing dynamics, and trophic status. A specific analysis carried out by applying additive mixed modelling, generalized least squares and mixed modelling, allowed investigation of the direct, seasonal effects of water temperature variations and trophic status on different algal groups. The dominant cyanobacteria (Oscillatoriales) showed only a partial relationship with temperature, while Nostocales and Chroococcales, which did not appear to have a close relationship with the trophic status of the lakes, were characterised by abrupt increases during the warmer months. High positive relationships with temperature were found for a few other algal groups (e.g., Chlorophyta, Charophyta and Dinophyta). Overall, the results indicated a positive relationship between the seasonal development of the more abundant and eutrophic-sensitive algal groups and the concurrent effect of trophic status and water temperature. Nevertheless, it was stressed that specific differences could be interpreted taking into account the different autoecological characteristics and susceptibilities of different species and functional groups to other stressing factors favouring losses, including, e.g., vertical sinking and grazing.

Keywords

Phytoplankton Cyanobacteria Deep southern subalpine lakes Temperature-nutrient effects Mixed modelling 

Notes

Acknowledgments

The limnological research in Lake Garda was partially funded by the Veneto Region and ARPAV (Veneto Region Environment Protection Agency). We thank three anonymous referees for comments and suggestions.

References

  1. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297PubMedCrossRefGoogle Scholar
  2. APHA, AWWA, WEF (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, WashingtonGoogle Scholar
  3. Blenckner T, Omstedt A, Rummukainen M (2002) A Swedish case study of contemporary and possible future consequences of climate change on lake function. Aquat Sci 64:171–184CrossRefGoogle Scholar
  4. Buzzi F (2002) Phytoplankton assemblages in two sub-basins of Lake Como. J Limnol 61:117–128CrossRefGoogle Scholar
  5. Coles JF, Jones RC (2000) Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river. J Phycol 36:7–16CrossRefGoogle Scholar
  6. D’alelio D, Gandolfi A, Boscaini A, Flaim G, Tolotti M, Salmaso N (2011) Planktothrix populations in subalpine lakes: selection for strains with strong gas vesicles as a function of lake depth, morphometry and circulation. Freshw Biol 56:1481–1493CrossRefGoogle Scholar
  7. de Bernardi, R. Canale C (1995) Ricerche pluriennali (1948–1992) sull’ecologia dello zooplancton del Lago Maggiore. Documenta Ist ital Idrobiol 55:1–68Google Scholar
  8. De Senerpont Domis LN, Mooij WM, Huisman J (2007) Climate-induced shifts in an experimental phytoplankton community: a mechanistic approach. Hydrobiologia 584:403–413CrossRefGoogle Scholar
  9. Dillon PJ, Rigler FH (1974) The phosphorus–chlorophyll relationship in lakes. Limnol Oceanogr 19:767–773CrossRefGoogle Scholar
  10. Dokulil MT, Jagsch A, George GD, Anneville O, Jankowsky T, Wahl B, Lenhart B, Blenckner T, Teubner K (2006) Twenty years of spatially coherent deepwater warming in lakes across Europe related to the North Atlantic Oscillation. Limnol Oceanogr 51:2787–2793CrossRefGoogle Scholar
  11. Elliott JA, Jones ID, Thackeray SJ (2006) Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559:401–411CrossRefGoogle Scholar
  12. Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085Google Scholar
  13. Garibaldi L, Anzani A, Marieni A, Leoni B, Mosello R (2003) Studies on the phytoplankton of the deep subalpine Lake Iseo. J Limnol 62:177–189CrossRefGoogle Scholar
  14. George G (2010) (ed) The impact of climate change on European lakes. Springer, DordrechtGoogle Scholar
  15. Hamilton DP, O’Brien KR, Burford MA, Brookes JD, McBride CG (2010) Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquat Sci 72:295–307CrossRefGoogle Scholar
  16. Hsieh CH, Ishikawa K, Sakai Y, Ishikawa T, Ichise S, Yamamoto Y, Kuo TC, Park HD, Yamamura N, Kumagai M (2010) Phytoplankton community reorganization driven by eutrophication and warming in Lake Biwa. Aquat Sci 72:467–483CrossRefGoogle Scholar
  17. Istvánovics V (2009) Eutrophication of lakes and reservoirs. In: Likens GE (ed) Encyclopedia of inland waters, vol 1. Elsevier, Oxford, pp 157–165CrossRefGoogle Scholar
  18. Jensen JP, Jeppesen E, Olrik K, Kristensen P (1994) Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can J Fish Aquat Sci 51:1692–1699CrossRefGoogle Scholar
  19. Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008) Summer heat waves promote blooms of harmful cyanobacteria. Glob Change Biol 14:495–512CrossRefGoogle Scholar
  20. Kangro K, Tamminen OK, Lignell T (2007) Species-specific responses of a cyanobacteria dominated phytoplankton community to artificial nutrient limitation in the Baltic Sea. Mar Ecol Prog Ser 336:15–27CrossRefGoogle Scholar
  21. Karentz D, Smayda TJ (1984) Temperature and seasonal occurrence patterns of 30 dominant phytoplankton species in Narragansett Bay over a 22-year period (1959–1980). Mar Ecol Prog Ser 18:277–293CrossRefGoogle Scholar
  22. Keller W (2007) Implications of climate warming for Boreal Shield lakes: a review and synthesis. Environ Rev 15:99–112CrossRefGoogle Scholar
  23. Komárek J, Anagnostidis K (2005) Cyanoprokaryota -2. Teil/2nd Part: oscillatoriales. In: Büdel B, Krienitz L, Gärtner G, Schagerl M (eds) Süsswasserflora von Mitteleuropa, 19/2. Elsevier/Spektrum, Heidelberg, pp 1–759Google Scholar
  24. Krienitz L (2009) Algae. In: Likens GE (ed) Encyclopedia of inland waters, vol 1. Elsevier, Oxford, pp 103–113CrossRefGoogle Scholar
  25. Lampert W, Sommer U (2007) Limnoecology. The ecology of lakes and streams, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  26. Morabito G, Oggioni A, Panzani P (2003) Phytoplankton assemblage at equilibrium in large and deep subalpine lakes: a case study from Lago Maggiore (N. Italy). Hydrobiologia 502:37–48CrossRefGoogle Scholar
  27. Mur L, Bejsdorf RO (1978) A model of the succession from green to blue-green algae based on light limitation. Verh Int Verein Limnol 20:2314–2321Google Scholar
  28. Nõges P, Adrian R, Anneville O, Arvola L, Blenckner T, George G, Jankowski T, Järvinen M, Maberly S, Padisák J, Straile D, Teubner K, Weyhenmeyer G (2010) The impact of variations in the climate on seasonal dynamics of phytoplankton. In: George G (ed) The impact of climate change on European Lakes. Springer, Dordrecht, pp 253–274CrossRefGoogle Scholar
  29. Ojala A, Kokkonen S, Kairesalo T (2003) The role of phosphorus in growth of phytoplankton in Lake Vesijärvi, southern Finland—a multitechnique approach. Aquat Sci 65:287–296CrossRefGoogle Scholar
  30. Padisák J (2004) Phytoplankton. In: O’Sullivan PE, Reynolds CS (eds) The Lakes Handbook, vol. 1, Limnology and limnetic ecology. Blackwell Publishing, Malden, pp 251–308Google Scholar
  31. Padisák J, Hajnal É, Krienitz L, Lakner J, Üveges V (2010) Rarity, ecological memory, rate of floral change in phytoplankton—and the mystery of the Red Cock. Hydrobiologia 653:45–64CrossRefGoogle Scholar
  32. Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58PubMedCrossRefGoogle Scholar
  33. Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37CrossRefGoogle Scholar
  34. Paul VJ (2008) Global warming and cyanobacterial harmful algal blooms. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs. Springer, New York, pp 239–257CrossRefGoogle Scholar
  35. Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Springer, New YorkCrossRefGoogle Scholar
  36. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  37. Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  38. Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428CrossRefGoogle Scholar
  39. Rhee G-Y, Gotham IJ (1980) Optimum N:P ratios and co-existence of planktonic algae. J Phycol 16:486–489CrossRefGoogle Scholar
  40. Rott E, Salmaso N, Hoehn E (2007) Quality control of Utermöhl based phytoplankton biovolume estimates—an easy task or a Gordian knot? Hydrobiologia 578:141–146CrossRefGoogle Scholar
  41. Salmaso N (2000) Factors affecting the seasonality and distribution of cyanobacteria and chlorophytes: a case study from the large lakes south of the Alps, with special reference to Lake Garda. Hydrobiologia 438:43–63CrossRefGoogle Scholar
  42. Salmaso N (2010) Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations. Freshw Biol 55:825–846CrossRefGoogle Scholar
  43. Salmaso N (2012) Influence of atmospheric modes of variability on the limnological characteristics of a deep lake south of the Alps. Clim Res. doi: 10.3354/cr01063 (in press)
  44. Salmaso N, Mosello R (2010) Limnological research in the deep southern subalpine lakes: synthesis, directions and perspectives. Adv Oceanogr Limnol 1:29–66CrossRefGoogle Scholar
  45. Salmaso N, Morabito G, Buzzi F, Garibaldi L, Simona M, Mosello R (2006) Phytoplankton as an indicator of the water quality of the deep lakes south of the Alps. Hydrobiologia 563:167–187CrossRefGoogle Scholar
  46. Schalau K, Rinke K, Straile D, Peeters F (2008) Temperature is the key factor explaining interannual variability of Daphnia development in spring: a modelling study. Oecologia 157:531–543PubMedCrossRefGoogle Scholar
  47. Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51:356–363CrossRefGoogle Scholar
  48. Simona M (2003) Winter and spring mixing depths affect the trophic status and composition of phytoplankton in the northern meromictic basin of Lake Lugano. J Limnol 62:190–206CrossRefGoogle Scholar
  49. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. WH Freeman & Co., New YorkGoogle Scholar
  50. Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Change Biol 14:1199–1208CrossRefGoogle Scholar
  51. Staehr PA, Baastrup-Spohr L, Sand-Jensen K, Stedmon C (2011) Lake metabolism scales with lake morphometry and catchment conditions. Aquat Sci, pp 15. doi: 10.1007/s00027-011-0207-6
  52. Stumm W, Morgan JJ (1996) Aquatic chemistry. Chemical equilibria and rates in natural waters. John Wiley & Sons Inc., New YorkGoogle Scholar
  53. Tadonléké R (2010) Evidence of warming effects on phytoplankton productivity rates and their dependence on eutrophication status. Limnol Oceanogr 55:973–982CrossRefGoogle Scholar
  54. Tilzer MM, Elbrächter M, Gieskes WW, Beese B (1986) Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biol 5:105–111CrossRefGoogle Scholar
  55. Wacklin P, Hoffman L, Komárek J (2009) Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornet et Flahault) comb. nova. Fottea 9:59–64Google Scholar
  56. Wagner C, Adrian R (2009) Cyanobacteria dominance: quantifying the effects of climate change. Limnol Oceanogr 54:2460–2468CrossRefGoogle Scholar
  57. Walsby AE, Avery A, Schanz F (1998) The critical pressures of gas vesicles in Planktothrix rubescens in relation to the depth of winter mixing in Lake Zurich, Switzerland. J Plankton Res 20:1357–1375CrossRefGoogle Scholar
  58. Wehr JD, Descy J-P (1998) Use of phytoplankton in large river management. J Phycol 34:741–749CrossRefGoogle Scholar
  59. Weyhenmeyer GA (2001) Warmer winters: are planktonic algal populations in Sweden’s largest lakes affected? Ambio 30:565–571PubMedGoogle Scholar
  60. Willén E (2003) Dominance patterns of planktonic algae in Swedish forest lakes. Hydrobiologia 502:315–324CrossRefGoogle Scholar
  61. Winder M, Hunter DA (2008) Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156:179–192PubMedCrossRefGoogle Scholar
  62. Winder M, Schindler DE (2004) Climatic effects on the phenology of lake processes. Glob Change Biol 10:1844–1856CrossRefGoogle Scholar
  63. Winder M, Reuter JE, Schladow SG (2009) Lake warming favours small-sized planktonic diatom species. Proc R Soc B 276:427–435PubMedCrossRefGoogle Scholar
  64. Wood SN (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. J Am Stat Assoc 99:673–686CrossRefGoogle Scholar
  65. Zapomělová E, Řeháková K, Jezberová J, Komárkova J (2010) Polyphasic characterization of eight planktonic Anabaena strains (Cyanobacteria) with reference to the variability of 61 Anabaena populations observed in the field. Hydrobiologia 639:99–113CrossRefGoogle Scholar
  66. Zuur A, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New YorkGoogle Scholar
  67. Zuur A, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  • Nico Salmaso
    • 1
    Email author
  • Fabio Buzzi
    • 2
  • Letizia Garibaldi
    • 3
  • Giuseppe Morabito
    • 4
  • Marco Simona
    • 5
  1. 1.Sustainable Agro-ecosystems and Bioresources DepartmentIASMA Research and Innovation Centre, Istituto Agrario di S. Michele all’Adige, Fondazione E. MachTrentoItaly
  2. 2.Dipartimento di LeccoARPA LombardiaOggionoItaly
  3. 3.Dipartimento Scienze Ambiente e TerritorioUniversità di MilanoMilanoItaly
  4. 4.C.N.R. Istituto per lo Studio degli EcosistemiVerbania PallanzaItaly
  5. 5.Istituto Scienze della Terra, Scuola Universitaria Professionale della Svizzera Italiana (SUPSI)CanobbioSwitzerland

Personalised recommendations