Aquatic Sciences

, Volume 74, Issue 2, pp 241–253 | Cite as

Assessing a decade of phosphorus management in the Lake Mendota, Wisconsin watershed and scenarios for enhanced phosphorus management

  • Emily L. Kara
  • Chad Heimerl
  • Tess Killpack
  • Matthew C. Van de Bogert
  • Hiroko Yoshida
  • Stephen R. Carpenter
Research Article


A phosphorus (P) budget was estimated for the watershed of Lake Mendota, Wisconsin, to assess the effects of nutrient management on P accumulation in the watershed soils. We estimated how nutrient management programs and legislation have affected the budget by comparing the budget for 2007 to a budget calculated for 1995, prior to implementation of the programs. Since 1995, inputs decreased from 1,310,000 to 853,000 kg P/yr (35% reduction) and accumulation decreased from 575,000 to 279,000 kg P/yr (51% reduction). Changes in P input and accumulation were attributed primarily to enhanced agricultural nutrient management, reduction in dairy cattle feed supplements and an urban P fertilizer ban. Four scenarios were investigated to determine potential impacts of additional nutrient management tactics on the watershed P budget and P loading to Lake Mendota. Elimination of chemical P fertilizer input has the greatest potential to reduce watershed P accumulation and establishment of riparian buffers has the greatest potential to prevent P loading to Lake Mendota.


Eutrophication Lake Mendota Mass balance Nutrient management Phosphorus 



We thank Monica Turner, Jake Vander Zanden, Jim Lorman, Chris Kucharik, Dave Lewis, Bill Provencher, the participants in the UW-Madison Ecosystems Services course for thoughtful feedback on the paper. We thank them and Pete Nowak, J. Mark Powell, Dick Lathrop, Lauri Lambert, and Doug Soldat for their helpful discussion and direction.


  1. Bannerman RT, Owens DW, Dodds RB, Hornewer NJ (1993) Sources of pollutants in Wisconsin Stormwater. Water Sci Technol 28(3–5):241–259Google Scholar
  2. Bennett EM, Reed-Andersen T, Houser JN, Gabriel JR, Carpenter SR (1999) A phosphorus budget for the Lake Mendota watershed. Ecosystems 2(1):69–75CrossRefGoogle Scholar
  3. Bennett EM, Carpenter SR, Clayton MK (2005) Soil phosphorus variability: scale-dependence in an urbanizing agricultural landscape. Landscape Ecol 20(4):389–400. doi:10.1007/s10980-004-3158-7 CrossRefGoogle Scholar
  4. Betz C, Jopke P, Connors K, Lathrop R (2002) Mid-term results of the Lake Mendota priority watershed project. http://wwwsoilswiscedu/extension/FAPM/2002proceedings/Betz-Conf-2002pdf
  5. Brock TD (1985) A eutrophic lake, Lake Mendota, WI. Ecological studies: analysis and synthesis, vol 55, 1st edn. Springer-Verlag, New YorkGoogle Scholar
  6. Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci USA 102(29):10002–10005. doi:10.1073/pnas.0503959102 CrossRefPubMedGoogle Scholar
  7. Carpenter SR (2008) Phosphorus control is critical to mitigating eutrophication. Proc Natl Acad Sci USA 105(32):11039–11040. doi:10.1073/Pnas.0806112105 CrossRefPubMedGoogle Scholar
  8. Carpenter SR, Bennett EM (2011) Reconsideration of the planetary boundary for phosphorus. Environ Res Lett 6(1):014009CrossRefGoogle Scholar
  9. Carpenter SR, Lathrop RC (2008) Probabilistic estimate of a threshold for eutrophication. Ecosystems 11(4):601–613. doi:10.1007/S10021-008-9145-0 CrossRefGoogle Scholar
  10. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568CrossRefGoogle Scholar
  11. Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19(2):292–305CrossRefGoogle Scholar
  12. DATCP (2009) Wisconsin Agricultural Statistics-2008. Wisconsin Department of Agriculture, Trade, and Consumer Protection, Madison, WIGoogle Scholar
  13. Diebel M, Maxted J, Robertson D, Han S, Vander Zanden M (2009) Landscape planning for agricultural nonpoint source pollution reduction III: assessing phosphorus and sediment reduction potential. Environ Manage 43(1):69–83. doi:10.1007/S00267-008-9139-X CrossRefPubMedGoogle Scholar
  14. Kamarainen AM, Yuan HL, Wu CH, Carpenter SR (2009) Estimates of phosphorus entrainment in Lake Mendota: a comparison of one-dimensional and three-dimensional approaches. Limnol Oceanogr Methods 7:553–567CrossRefGoogle Scholar
  15. Kitchell JF (1992) Food web management : a case study of Lake Mendota. Springer series on environmental management. Springer-Verlag, New YorkGoogle Scholar
  16. Laboski A, Peters J, Bundy L (2006) Nutrient application guildelines for field vegetable and fruit crops in Madison, WI. University of Wisconsin, Madison ExtensionGoogle Scholar
  17. Lathrop RC (1979) Dane County water quality plan. Madison, WIGoogle Scholar
  18. Lathrop RC (2007) Perspectives on the eutrophication of the Yahara Lakes. Lake Reserv Manag 23:345–365Google Scholar
  19. Lathrop RC (2009) Controlling eutrophication in the Yahara Lakes: Challenges and opportunities. Presented at Community Environmental Forum, UW Madison Nelson Institute of Environmental StudiesGoogle Scholar
  20. Lathrop RC, Carpenter SR, Stow CA, Soranno PA, Panuska JC (1998) Phosphorus loading reductions needed to control blue–green algal blooms in Lake Mendota. Can J Fish Aquat Sci 55(5):1169–1178CrossRefGoogle Scholar
  21. Lathrop RC, Carpenter SR, Robertson DM (1999) Summer water clarity responses to phosphorus, Daphnia grazing, and internal mixing in Lake Mendota. Limnol Oceanogr 44(1):137–146CrossRefGoogle Scholar
  22. Lorimor J, Powers W, Sutton A (2000) Manure Characteristics. Iowa State University MidWest Plan ServiceGoogle Scholar
  23. MacDonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world’s croplands. Proc Natl Acad Sci 108(7):3086–3091. doi:10.1073/pnas.1010808108 CrossRefPubMedGoogle Scholar
  24. Peters J (2010) Wisconsin soil test summary: 2005–2009. New Horiz Soil Sci 3:1–3Google Scholar
  25. Powell JM, Jackson-Smith DB, Satter LD (2002) Phosphorus feeding and manure nutrient recycling on Wisconsin dairy farms. Nutr Cycl Agroecosyst 62(3):277–286CrossRefGoogle Scholar
  26. Powell JM, McCrory DF, Jackson-Smith DB, Saam H (2005) Manure collection and distribution on Wisconsin dairy farms. J Environ Qual 34(6):2036–2044. doi:10.2134/Jeq2004.0478 CrossRefPubMedGoogle Scholar
  27. Satter L, Wu Z (1999) Phosphorus requirements in dairy cattle. In Maryland Nutrition Conference, Baltimore, MDGoogle Scholar
  28. Satter LD, Klopfenstein T, Erickson G, Powell JM (2005) Phosphorus and dairy-beef nutrition. Phosphorus, agriculture, and the environment. ASA-CSSA-SSSA Monograph No. 46. American Society for Agronomists, MadisonGoogle Scholar
  29. Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195(4275):260–262CrossRefPubMedGoogle Scholar
  30. Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37 year whole-ecosystem experiment. Proc Natl Acad Sci USA 105(32):11254–11258. doi:10.1073/Pnas.0805108105 CrossRefPubMedGoogle Scholar
  31. Smith VH, Joye SB, Howarth RW (2006) Eutrophication of freshwater and marine ecosystems. Limnol Oceanogr 51(1):351–355CrossRefGoogle Scholar
  32. Soldat DJ, Petrovic AM (2008) The fate and transport of phosphorus in turfgrass ecosystems. Crop Sci 48(6):2051–2065. doi:10.2135/Cropsci2008.03.0134 CrossRefGoogle Scholar
  33. Soranno PA, Carpenter SR, Lathrop RC (1997) Internal phosphorus loading in Lake Mendota: response to external loads and weather. Can J Fish Aquat Sci 54(8):1883–1893Google Scholar
  34. State of Wisconsin Annual Soil Test Summary Report (2011) Accessed 25 May 2011
  35. Strand Associates (2009) Community manure management facilities planCommunity manure management facilities plan. Dane County Office of Lakes and Watersheds and Lakes and Watershed CommissionGoogle Scholar
  36. USDA-AMS (2000) United States standards, grades, and weight classes for shell eggs. United States Department of Agriculture Agricultural Marketing Service, Washington, DCGoogle Scholar
  37. USDA-NASS (2009a) Census of Agriculture 2007. vol 1. United States Department of Agriculture National Agricultural Statistics Service, Washington, DCGoogle Scholar
  38. USDA-NASS (2009b) Quick Stats Wisconsin County Data. United States Department of Agriculture National Agricultural Statistics Service, Washington, DCGoogle Scholar
  39. Valentin L, Bernardo DJ, Kastens TL (2004) Testing the empirical relationship between best management practice adoption and farm profitability. Rev Agric Econ 26(4):489–504. doi:10.1111/J.1467-9353.2004.00195.X CrossRefGoogle Scholar
  40. Vitousek PM, Naylor R, Crews T, David MB, Drinkwater LE, Holland E, Johnes PJ, Katzenberger J, Martinelli LA, Matson PA, Nziguheba G, Ojima D, Palm CA, Robertson GP, Sanchez PA, Townsend AR, Zhang FS (2009) Nutrient imbalances in agricultural development. Science 324(5934):1519–1520. doi:10.1126/science.1170261 CrossRefPubMedGoogle Scholar
  41. Vollenweider A (1976) Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell’Istiuto italiano di Idrobiologia 33:53Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Emily L. Kara
    • 1
  • Chad Heimerl
    • 2
  • Tess Killpack
    • 3
  • Matthew C. Van de Bogert
    • 4
  • Hiroko Yoshida
    • 5
  • Stephen R. Carpenter
    • 4
  1. 1.Department of Civil and Environmental EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of ZoologyUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Center for LimnologyUniversity of Wisconsin-MadisonMadisonUSA
  5. 5.Nelson Institute for Environmental StudiesUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations