Aquatic Sciences

, Volume 71, Issue 4, pp 399–410 | Cite as

Vertical hydraulic exchange and the contribution of hyporheic community respiration to whole ecosystem respiration in the River Lahn (Germany)

  • Detlev Ingendahl
  • Dietrich BorchardtEmail author
  • Nicole Saenger
  • Peter Reichert
Research Article


To quantify the contribution of hyporheic community respiration to whole running-water ecosystem respiration in a cultural landscape setting, we studied the vertical hydraulic exchange in riffle–pool sequences of the River Lahn (Germany). We used flow through curves from four tracer experiments to estimate flow velocities in the surface and subsurface water. Generally, vertical exchange velocities were higher in riffle sections and a high temporal variability was observed (range of values 0.11–1.08 m day−1). We then used (1) the exchange velocities and (2) time series of dissolved oxygen concentration in surface and subsurface water to calculate hyporheic respiration. Hyporheic respiration was estimated in a range of 10–50 mg O2 m−3 day−1 for the upper sediment layer (first 20 cm). It was much lower in the deeper sediment layer (20–40 cm), ranging from 0 to 10 mg Om−3 day−1 (volumes are volumes of interstitial water; the average porosity was 20%). We determined primary production and respiration of the biofilm growing on the sediment by modelling dissolved oxygen concentration time series for a 2,450 m long stream reach (dissolved oxygen concentrations with diurnal variations from 8 to 16 mg L−1). Modelled respiration rates ranged from 2 to 21 g Om2 day−1. All information was integrated in a system analysis with numerical simulations of respiration with and without sediments. Results indicated that hyporheic respiration accounted for 6 to 14% of whole ecosystem respiration. These values are much lower than in other whole system respiration studies on more oligotrophic river systems.


Dissolved oxygen Hydrodynamic exchange Ecosystem respiration Hyporheic zone Modelling 



The authors thank the Organisation for Economic Co-operation and Development (OECD) for funding a research stay of D. Ingendahl at EAWAG and gratefully acknowledge the support provided by the German Research Foundation (Deutsche Forschungsgemeinschaft) to D. B., grant No. BO 1012/4-4.


  1. Battin TJ, Kaplan LA, Newbold JD, Hendricks SP (2003) A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function. Freshw Biol 48(6):995–1014CrossRefGoogle Scholar
  2. Bennett J, Rathbun RE (1972) Reaeration in open-channel flow. US Geological Survey Professional Paper, 737, US Government Printing Office, Washington, DCGoogle Scholar
  3. Borchardt D, Fischer J (2000) Three-dimensional patterns and processes in the River Lahn (Germany): variability of abiotic and biotic conditions. Verhandlungen der Internationalen Vereinigung Limnologie 27:393–397Google Scholar
  4. Borchardt D, Pusch M (eds) (2009a) The hyporheic zone of running waters: ecological patterns, processes and bottleneck functions. Fundam Appl Limnol Adv Limnol 61:168Google Scholar
  5. Borchardt D, Pusch M (2009b) An integrative, interdisciplinary research approach for the identification of patterns, processes and bottleneck functions of the hyporheic zone of running waters. Fundam Appl Limnol Adv Limnol 61:1–8Google Scholar
  6. Borchardt D, Reichert P (2001) River Water Quality Model no. 1 (RWQM1): case study I. Compartmentalisation approach applied to oxygen balances in the River Lahn (Germany). Water Sci Technol 43:41–49PubMedGoogle Scholar
  7. Bretschko G, Klemens WE (1986) Quantitative methods and aspects in the study of the interstitial fauna in gravel streams. Stygologia 2:279–316Google Scholar
  8. Brun R, Reichert P, Künsch HR (2001) Practical identifiability analysis of large environmental simulation models. Water Resour Res 37(4):1015–1030CrossRefGoogle Scholar
  9. Brunke M, Gonser J (1997) The ecological significance of the exchange processes between rivers and groundwater. Freshw Biol 37:1–33CrossRefGoogle Scholar
  10. Churchill MA, Elmore HL, Buckingham RA (1962) The prediction of stream reaeration rates. J Sanit Eng Div 88(SA4):1Google Scholar
  11. Duff JH, Triska FJ (1990) Denitrification in sediments from the hyporheic zone adjacent to a small adjacent stream. Can J Fish Aquat Sci 47:1140–1147CrossRefGoogle Scholar
  12. Fellows CS, Valett HM, Dahm CN (2001) Whole-stream metabolism in two mountane streams: contribution of the hyporheic zone. Limnol Oceanogr 46:523–531CrossRefGoogle Scholar
  13. Grimm NB, Fisher SG (1984) Exchange between surface and subsurface water: implications for stream metabolism and nutrient cycling. Hydrobiologia 111:219–228CrossRefGoogle Scholar
  14. Ibisch RB, Borchardt D (2002) Effects of periphyton biomass and suspended solids on river bed permeability and hyporheic oxygen balances. Verhandlungen der Internationalen Vereinigung für Limnologie 28:1875–1879Google Scholar
  15. Ibisch RB, Seydell I, Borchardt D (2009) Influence of periphyton biomass dynamics on biological colmation processes in the hyporheic zone of a gravel bed river (River Lahn, Germany). Fundam Appl Limnol Adv Limnol 61:87–104Google Scholar
  16. Ingendahl D, Ter Haseborg E, Meier M, van der Most O, Steele H, Werner W (2002) Linking hyporheic community respiration and inorganic nitrogen transformations in the River Lahn (Germany). Archiv für Hydrobiologie 155:99–120Google Scholar
  17. Ingendahl D, Ter Haseborg E, van der Most O, Werner W (2009) Hyporheic community respiration and nitrogen transformation as influenced by different interstitial flow velocities. Fundam Appl Limnol Adv Limnol 61:119–137Google Scholar
  18. Jones JB (1995) Factors controlling hyporheic respiration in a desert stream. Freshw Biol 34:91–99CrossRefGoogle Scholar
  19. Lenk M, Saenger N (2000) Exchange processes in the river bed and their influence on temperature variations. Verhandlungen der Internationalen Vereinigung für Limnologie 27:427–430Google Scholar
  20. McCuthan JH Jr, Lewis WM Jr, Saunders JF III (1998) Uncertainty in the estimation of stream metabolism from open-channel oxygen concentrations. J North Am Benthol Soc 17(2):155–164CrossRefGoogle Scholar
  21. Naegeli MW, Uehlinger U (1997) Contribution of the hyporheic zone to ecosystem metabolism in a prealpine gravel-bed river. J North Am Benthol Soc 16:794–804CrossRefGoogle Scholar
  22. O’Connor DJ, Dobbins WE (1958) Mechanism of reaeration in natural streams. Trans Am Soc Civ Eng 2934:641Google Scholar
  23. Orghidan T (1959) Ein neuer Lebensraum des unterirdischen Wassers: Der hyporheische Biotop. Archiv für Hydrobiologie 55:392–414Google Scholar
  24. Owens M, Edwards RW, Gibbs JW (1964) Some reaeration studies in streams. Int J Air Water Pollut 8:469Google Scholar
  25. Pusch M (1996) The metabolism of organic matter in the hyporheic zone of a mountain stream, and its spatial distribution. Hydrobiologia 323:107–118CrossRefGoogle Scholar
  26. Reichert P (1994) AQUASIM—a tool for simulation and data analysis of aquatic systems. Water Sci Technol 30(2):21–30Google Scholar
  27. Reichert P (1995) Design techniques of a computer program for the identification of processes and the simulation of water quality in aquatic systems. Environ Softw 10:199–210CrossRefGoogle Scholar
  28. Saenger N (2000) Identifikation von Austauschprozessen zwischen Fließgewässer und hyporheischer Zone. PhD dissertation, TU Darmstadt, Mitteilungen, 115Google Scholar
  29. Saenger N, Zanke UCE (2009) A depth-oriented view of hydraulic exchange patterns between surface water and the hyporheic zone—analysis of field experiments. Fundam Appl Limnol Adv Limnol 61:9–27Google Scholar
  30. Saenger N, Kitanidis PK, Street RL (2005) A numerical study of parameters controlling hyporheic exchange processes. Water Resour Res 41(12) W12424. doi: 10.1029/2004WR003875
  31. Schwoerbel J (1961) Über die Lebensbedingungen und die Besiedlung des hyporheischen Lebensraumes. Archiv für Hydrobiologie Supplement 25:182–214Google Scholar
  32. Stanford JA, Ward JV (1988) The hyporheic habitat of river ecosystems. Nature 335:64–66CrossRefGoogle Scholar
  33. Stanford JA, Ward JV (1993) An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. J North Am Benthol Soc 12:48–60CrossRefGoogle Scholar
  34. Tsivoglou EC, Wallace JR (1972) Characterization of stream reaeration capacity, EPA-R3–72-012, US. Environmental Protection Agency, Washington, DCGoogle Scholar
  35. Uehlinger U, Naegeli MW (1998) Ecosystem metabolism, disturbance, and stability in a prealpine gravel bed river. J North Am Benthol Soc 17:165–178CrossRefGoogle Scholar
  36. Vaux WG (1968) Intragravel flow and interchange of water in a streambed. Fish Bull 66:479–489Google Scholar
  37. Wagner FH, Bretschko G (2002) Interstitial flow through preferential flow paths in the hyporheic zone of the Oberer Seebach, Austria. Aquat Sci 64:307–316CrossRefGoogle Scholar
  38. Wawra B, Saenger N, Montenegro H, Zanke UCE (2009) Driving forces for solute transport in the hyporheic zone of the River Lahn (Germany)—numerical simulations. Fundam Appl Limnol Adv Limnol 61:29–44Google Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Detlev Ingendahl
    • 1
  • Dietrich Borchardt
    • 2
    Email author
  • Nicole Saenger
    • 3
  • Peter Reichert
    • 4
  1. 1.State Agency for NatureEnvironment and Consumer Protection of Northrhine-WestfaliaKirchhundemGermany
  2. 2.Department Aquatic Ecosystems Analysis and ManagementHelmholtz Centre for Environmental Research-UFZMagdeburgGermany
  3. 3.Institute of Hydraulic and Water Resources ResearchTechnische Universität DarmstadtDarmstadtGermany
  4. 4.Eawag: Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland

Personalised recommendations