Advertisement

On a Conjecture of Hanna Connecting Distinct Part and Complete Partitions

  • George E. Andrews
  • George Beck
  • Brian HopkinsEmail author
Article
  • 10 Downloads

Abstract

Complete partitions are a generalization of MacMahon’s perfect partitions; we further generalize these by defining k-step partitions. A matrix equation shows an unexpected connection between k-step partitions and distinct part partitions. We provide two proofs of the corresponding theorem, one using generating functions and one combinatorial. The algebraic proof relies on a generalization of a conjecture made by Paul Hanna in 2012.

Keywords

Integer partitions Distinct part partitions Complete partitions 

Mathematics Subject Classification

05A17 11P84 

Notes

References

  1. 1.
    J. L. Brown, Note on complete sequences of integers. Amer. Math. Monthly 68 (1961) 557–560.MathSciNetzbMATHGoogle Scholar
  2. 2.
    V. E. Hoggatt and C. H. King, Problem E1424. Amer. Math. Monthly 67 (1960) 593.MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. A. MacMahon, Combinatory Analysis, vol. 1. Cambridge University Press, Cambridge, 1915.zbMATHGoogle Scholar
  4. 4.
    S. K. Park, Complete partitions. Fibonacci Quart. 36 (1998) 354–360.MathSciNetzbMATHGoogle Scholar
  5. 5.
    S. K. Park, The \(r\)-complete partitions. Disc. Math. 183 (1998) 293–297.MathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Schneider, Arithmetic of partitions and the \(q\)-bracket operator. Proc. Amer. Math. Soc. 145 (2017) 1953–1968.MathSciNetCrossRefGoogle Scholar
  7. 7.
    N. J. A. Sloane, editor, The On-Line Encyclopedia of Integer Sequences. Published electronically at oeis.org, 2019.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • George E. Andrews
    • 1
  • George Beck
    • 2
  • Brian Hopkins
    • 3
    Email author
  1. 1.The Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Wolfram Research, Inc.ChampaignUSA
  3. 3.Saint Peter’s UniversityJersey CityUSA

Personalised recommendations