Andrews–Gordon Type Series for Kanade–Russell Conjectures
- 17 Downloads
Abstract
We construct Andrews–Gordon type positive series as generating functions of partitions satisfying certain difference conditions in six conjectures by Kanade and Russell. Thus, we obtain q-series conjectures as companions to Kanade and Russell’s combinatorial conjectures. We construct generating functions for missing partition enumerants as well, without claiming new partition identities.
Keywords
Partition generating function Andrews–Gordon identities Kanade–Russell conjecturesMathematics Subject Classification
05A17 05A15 11P84Notes
Acknowledgements
We thank George E. Andrews, Alexander Berkovich, Karl Mahlburg and Dennis Stanton for useful discussions, suggesting references or terminology during the preparation of the manuscript. The term prestidigitation and the story in the Appendix is due to the historian and my friend Emre Erol of Sabancı University. We also thank the anonymous referees for their time and their suggestions for improvements.
References
- 1.Alladi, K., Andrews, G.E., Gordon, B.: Refinements and generalizations of Capparelli’s conjecture on partitions. J. Algebra 174(2), 636–658 (1995)MathSciNetCrossRefGoogle Scholar
- 2.Andrews, G.E.: An analytic generalization of the Rogers-Ramanujan identities for odd moduli. Proc. Nat. Acad. Sci. U.S.A. 71, 4082–4085 (1974)MathSciNetCrossRefGoogle Scholar
- 3.Andrews, G.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1984)CrossRefGoogle Scholar
- 4.Bringmann, K., Jennings-Shaffer, C., Mahlburg, K.: Proofs and reductions of various conjectured partition identities of Kanade and Russell. https://doi.org/10.1515/crelle-2019-0012 (2019)
- 5.Capparelli, S.: On some representations of twisted affine Lie algebras and combinatorial identities. J. Algebra 154(2), 335–355 (1993)MathSciNetCrossRefGoogle Scholar
- 6.Kanade, S., Russell, M.C.: IdentityFinder and some new identities of Rogers-Ramanujan type. Exp. Math. 24(4), 419–423 (2015)MathSciNetCrossRefGoogle Scholar
- 7.Kanade, S., Russell, M.C.: Staircases to analytic sum-sides for many new integer partition identities of Rogers-Ramanujan type. Electron. J. Combin. 26(1), #P1.6 (2019)Google Scholar
- 8.Kurşungöz, K.: Parity considerations in Andrews-Gordon identities. European J. Combin. 31(3), 976–1000 (2010)MathSciNetCrossRefGoogle Scholar
- 9.Kurşungöz, K.: Cluster parity indices of partitions. Ramanujan J. 23(1-3), 195–213 (2010)MathSciNetCrossRefGoogle Scholar
- 10.Kurşungöz, K.: Andrews-Gordon type series for Capparelli’s and Göllnitz-Gordon identities. J. Combin. Theory Ser. A 165, 117–138 (2019)MathSciNetCrossRefGoogle Scholar
- 11.Stanton, D.: The Bailey-Rogers-Ramanujan group. In: Berndt, B.C., Ono, K. (eds.) \(q\)-Series with Applications to Combinatorics, Number Theory, and Physics (Urbana, IL, 2000), Contemp. Math., 291, pp. 55–70. Amer. Math. Soc., Providence, RI (2001)Google Scholar