On the Andrews–Yee Identities Associated with Mock Theta Functions

  • Jin Wang
  • Xinrong MaEmail author


In this paper, we generalize the Andrews–Yee identities associated with the third-order mock theta functions \(\omega (q)\) and \(\nu (q)\). We obtain some q-series transformation formulas, one of which gives a new Bailey pair. Using the classical Bailey lemma, we derive a product formula for two \({}_2\phi _1\) series. We also establish recurrence relations and transformation formulas for two finite sums arising from the Andrews–Yee identities.


Mock theta functions Bailey pair The WZ method Transformation formulas 

Mathematics Subject Classification

Primary 33D15 Secondary 05A30 11P81 



  1. 1.
    Andrews, G.E.: On basic hypergeometric series, mock theta functions, and partitions. I. Quart. J. Math. 17, 64–80 (1966)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andrews, G.E.: On basic hypergeometric series, mock theta functions, and partitions. II. Quart. J. Math. 17, 132–143 (1966)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Andrews, G.E.: \(q\)-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. CBMS Regional Conf. Series in Math., No. 66., Amer. Math. Soc., Providence, RI (1986)Google Scholar
  4. 4.
    Andrews, G.E.: Bailey’s transform, lemma, chains and tree. In: Bustoz, J., Ismail, M.E.H., Suslov, S.K. (eds.) Special Functions 2000: Current Perspective and Future Directions, pp. 1–22. Kluwer Acad. Publ., Dordrecht (2001)Google Scholar
  5. 5.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, Vol. 71. Cambridge University Press, Cambridge (1999)Google Scholar
  6. 6.
    Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook, Part I. Springer, New York (2005)zbMATHGoogle Scholar
  7. 7.
    Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook, Part II. Springer, New York (2009)zbMATHGoogle Scholar
  8. 8.
    Andrews, G.E., Dixit, A., Yee, A.J.: Partitions associated with the Ramanujan/Watson mock theta functions \(\omega (q), \nu (q),\) and \(\phi (q)\). Res. Number Theory 1, #A19 (2015)Google Scholar
  9. 9.
    Andrews, G.E., Warnaar, S.O.: The product of partial theta functions. Adv. in Appl. Math. 39(1), 116–120 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Andrews, G.E., Warnaar, S.O.: The Bailey transform and false theta functions. Ramanujan J. 14(1), 173–188 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Andrews, G.E., Yee, A.J.: Some identities associated with mock theta function \(\omega (q)\) and \(\nu (q)\). Ramanujan J. 48(3), 613–622 (2019)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bailey, W.N.: Some identities in combinatory analysis. Proc. London Math. Soc. (2) 49, 421–435 (1947)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Chern, S.: Combinatorial proof of an identity of Andrews and Yee. Ramanujan J. 49(3), 505–513 (2019)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Choi, Y.S.: The basic bilateral hypergeometric series and the mock theta functions. Ramanujan J. 24(3), 345–386 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series. Second Edition. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  16. 16.
    Ma, X.R.: A novel extension of the Lagrange-Bürmann expansion formula. Linear Algebra Appl. 433(11-12), 2152–2160 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)zbMATHGoogle Scholar
  18. 18.
    Petkovšek, M., Wilf, H.S., Zeilberger, D.: \(A=B.\) K Peters, Ltd., Wellesley, MA (1996)Google Scholar
  19. 19.
    Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa Publishing House, New Delhi (1988)zbMATHGoogle Scholar
  20. 20.
    Schlosser, M.: \(q\)-Analogues of two product formulas of hypergeometric functions by Bailey. In: Nashed, M.Z., Li, X. (eds.) Frontiers In Orthogonal Polynomials And \(q\)-Series, Contemp. Math. Appl. Monogr. Expo. Lect. Notes, 1, World Sci. Publ., pp. 445–449. Hackensack, NJ (2018)Google Scholar
  21. 21.
    Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1967)CrossRefGoogle Scholar
  22. 22.
    Warnaar, S.O.: 50 years of Bailey’s lemma. In: Betten, A., Kohnert, A., Laue, R., Betten, A.W. (eds.) Algebraic Combinatorics and Applications.(Gößweinstein, 1999), pp. 333–347. Springer, Berlin (2001)CrossRefGoogle Scholar
  23. 23.
    Watson, G.N.: The final problem: an account of the mock theta functions. J. London Math. Soc. 11(1), 55–80 (1936)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang Normal UniversityJinHuaPeople’s Republic of China
  2. 2.Department of MathematicsSoochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations