New Fifth and Seventh Order Mock Theta Function Identities

  • Frank G. GarvanEmail author


We give simple proofs of Hecke–Rogers indefinite binary theta series identities for the two Ramanujan’s fifth order mock theta functions \(\chi _0(q)\) and \(\chi _1(q)\) and all three of Ramanujan’s seventh order mock theta functions. We find that the coefficients of the three mock theta functions of order 7 are surprisingly related.


Mock theta functions Hecke–Rogers double sums Bailey pairs Conjugate Bailey pairs 

Mathematics Subject Classification

Primary 33D15 Secondary 11B65 11F27 



I would like to thank Chris Jennings-Shaffer and Jeremy Lovejoy for their comments and suggestions. Also I would like to thank the referee for corrections and suggestions.


  1. 1.
    Andrews, G.E.: The fifth and seventh order mock theta functions. Trans. Amer. Math. Soc. 293(1), 113–134 (1986)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andrews, G.E.: The Theory of Partitions. Reprint of the 1976 original. Cambridge University Press, Cambridge (1998)Google Scholar
  3. 3.
    Andrews, G.E., Garvan, F.G.: Ramanujan’s “lost” notebook. VI. The mock theta conjectures. Adv. Math. 73(2), 242–255 (1989)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bailey, W.N.: Identities of the Rogers-Ramanujan type. Proc. London Math. Soc. (2) 50, 1–10 (1948)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series. Second Edtion. Encyclopedia of Mathematics and its Applications, Vol. 96. Cambridge University Press, Cambridge (2004)Google Scholar
  6. 6.
    Hickerson, D.: On the seventh order mock theta functions. Invent. Math. 94(3), 661–677 (1988)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lovejoy, J.: Ramanujan-type partial theta identities and conjugate Bailey pairs. Ramanujan J. 29(1-3), 51–67 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Slater, L.J.: A new proof of Rogers’s transformations of infinite series. Proc. London Math. Soc. (2) 53, 460–475 (1951)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Subbarao, M.V.: Combinatorial proofs of some identities. In: Jordan, J.H., Webb, W.A. (eds.) Proceedings of the Washington State University Conference on Number Theory, pp. 80–91. Dept. Math., Washington State Univ., Pullman, Washington (1971)Google Scholar
  10. 10.
    Warnaar, S.O.: Partial theta functions. I. Beyond the lost notebook . I. Beyond the lost notebook. Proc. London Math. Soc. (3) 87(2), 363–395 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Watson, G.N.: The mock theta functions (2). Proc. London Math. Soc. (2) 42(4), 274–304 (1936)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Zagier, D.: Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann). Astérisque 326, 143–164 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Zwegers, S.: On two fifth order mock theta functions. Ramanujan J. 20(2), 207–214 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zwegers, S.: Mock Theta Functions. Ph.D. Thesis. Universiteit Utrecht, Utrecht (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of FloridaGainesvilleUSA

Personalised recommendations