Construction of Finite Braces

  • Wolfgang RumpEmail author


Affine structures of a group G (=braces with adjoint group G) are characterized equationally without assuming further invertibility conditions. If G is finite, the construction of affine structures is reduced to affine structures of pq-groups. The delicate relationship between finite solvable groups and involutive Yang–Baxter groups is further clarified by showing that much of an affine structure is already inherent in the Sylow system of the group. Semidirect products of braces are modified (shifted) in two ways to handle affine structures of semidirect products of groups. As an application, two of Vendramin’s conjectures on affine structures of pq-groups are verified. A further example illustrates what happens beyond semidirect products.


Affine structure Brace Metacommutation Sylow basis 

Mathematics Subject Classification

53B05 20F16 68R05 08A05 20E22 81R50 



The author would like to express thanks to Lendro Vendramin for providing a gap program which was used to check the result of Example 4.


  1. 1.
    Auslander, L.: The structure of complete locally affine manifolds. Topology 3(suppl.1), 131–139 (1964)Google Scholar
  2. 2.
    Auslander, L.: Simply transitive groups of affine motions. Amer. J. Math. 99(4), 809–826 (1977)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Auslander, L., Markus, L.: Holonomy of flat affinely connected manifolds. Ann. of Math. (2) 62, 139–151 (1955)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bachiller, D.: Classification of braces of order \(p^3\). J. Pure Appl. Algebra 219(8), 3568–3603 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bachiller, D.: Study of the Algebraic Structure of Left Braces and the Yang-Baxter Equation. Ph.D. Thesis. Univ. Autònoma de Barcelona, Barcelona (2016)Google Scholar
  6. 6.
    Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et Anneaux Réticulés. Lecture Notes in Mathematics, Vol. 608. Springer-Verlag, Berlin-New York (1977)Google Scholar
  7. 7.
    Cedó, F., Jespers, E., del Río, Á.: Involutive Yang-Baxter groups. Trans. Amer. Math. Soc. 362(5), 2541–2558 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Caranti, A., Dalla Volta, F., Sala, M.: Abelian regular subgroups of the affine group and radical rings. Publ. Math. Debrecen 69(3), 297–308 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Catino, F., Rizzo, R.: Regular subgroups of the affine group and radical circle algebras. Bull. Aust. Math. Soc. 79(1), 103–107 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Charlap, L.S.: Bieberbach Groups and Flat Manifolds. Universitext. Springer-Verlag, New York (1986)zbMATHGoogle Scholar
  11. 11.
    Cohn, H., Kumar, A.: Metacommutation of Hurwitz primes. Proc. Amer. Math. Soc. 143(4), 1459–1469 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Conway, J.H., Smith, D.A.: On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry. A K Peters, Ltd., Natick, MA (2003)zbMATHGoogle Scholar
  13. 13.
    Dehornoy, P.: Groupes de Garside. Ann. Sci. École Norm. Sup. (4) 35(2), 267–306 (2002)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Dehornoy, P., Paris, L.: Gaussian groups and Garside groups, two generalisations of Artin groups. Proc. London Math. Soc. (3) 79(3), 569–604 (1999)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Drinfel’d, V.G.: On some unsolved problems in quantum group theory. In: Kulish, P.P. (ed.) Quantum Groups (Leningrad, 1990), pp. 1–8. Lecture Notes in Math., Vol. 1510. Springer-Verlag, Berlin (1992)Google Scholar
  16. 16.
    Etingof, P., Schedler, T., Soloviev, A.: Set-theoretical solutions to the quantum Yang-Baxter equation. Duke Math. J. 100(2), 169–209 (1999)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Forsyth, A., Gurev, J., Shrima, S.: Metacommutation as a group action on the projective line over \({\mathbb{F}}_p\). Proc. Amer. Math. Soc. 144(11), 4583–4590 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Gateva-Ivanova, T.: Noetherian properties of skew polynomial rings with binomial relations. Trans. Amer. Math. Soc. 343(1), 203–219 (1994)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Gateva-Ivanova, T.: Quadratic algebras, Yang-Baxter equation, and Artin-Schelter regularity. Adv. Math. 230(4-6), 2152–2175 (2012)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Gateva-Ivanova, T., Van den Bergh, M.: Semigroups of I-type. J. Algebra 206(1), 97–112 (1998)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Guarnieri, L., Vendramin, L.: Skew braces and the Yang-Baxter equation. Math. Comp. 86(307), 2519–2534 (2017)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Hall, P.: On the Sylow systems of a soluble group. Proc. London Math. Soc. (2) 43(5), 316–323 (1937)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hall, P.: A characteristic property of soluble groups. J. London Math. Soc. 12(3), 198–200 (1937)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Jespers, E., Okniński, J.: Monoids and groups of I-type. Algebr. Represent. Theory 8(5), 709–729 (2005)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Kim, H.: Complete left-invariant affine structures on nilpotent Lie groups. J. Differential Geom. 24(3), 373–394 (1986)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Milnor, J.: On fundamental groups of complete affinely flat manifolds. Adv. Math. 25(2), 178–187 (1977)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Picantin, M.: The center of thin Gaussian groups. J. Algebra 245(1), 92–122 (2001)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Rump, W.: A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation. Adv. Math. 193(1), 40–55 (2005)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Rump, W.: Braces, radical rings, and the quantum Yang-Baxter equation. J. Algebra 307(1), 153–170 (2007)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Rump, W.: Classification of cyclic braces. J. Pure Appl. Algebra 209(3), 671–685 (2007)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Rump, W.: \(L\)-algebras, self-similarity, and \(l\)-groups. J. Algebra 320(6), 2328–2348 (2008)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Rump, W.: Semidirect products in algebraic logic and solutions of the quantum Yang-Baxter equation. J. Algebra Appl. 7(4), 471–490 (2008)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Rump, W.: The brace of a classical group. Note Mat. 34(1), 115–144 (2014)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Rump, W.: Decomposition of Garside groups and self-similar \(L\)-algebras. J. Algebra 485, 118–141 (2017)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Segal, D.: Free left-symmetric algebras and an analogue of the Poincaré-Birkhoff-Witt theorem. J. Algebra 164(3), 750–772 (1994)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Tate, J., Van den Bergh, M.: Homological properties of Sklyanin algebras. Invent. Math. 124(1-3), 619–647 (1996)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Algebra and Number TheoryUniversity of StuttgartStuttgartGermany

Personalised recommendations