Annals of Combinatorics

, Volume 20, Issue 4, pp 831–868 | Cite as

A Tableau Approach to the Representation Theory of 0-Hecke Algebras

  • Jia HuangEmail author


A 0-Hecke algebra is a deformation of the group algebra of a Coxeter group. Based on work of Norton and Krob-Thibon, we introduce a tableau approach to the representation theory of 0-Hecke algebras of type A, which resembles the classic approach to the representation theory of symmetric groups by Young tableaux and tabloids. We extend this approach to types B and D, and obtain a correspondence between the representation theory of 0-Hecke algebras of types B and D and quasisymmetric functions and noncommutative symmetric functions of types B and D. Other applications are also provided.


0-Hecke algebra tableau ribbon Grothendieck group quasisymmetric function noncommutative symmetric function type B type D antipode skew element 

Mathematics Subject Classification

05E05 05E10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras, Vol. 1: Techniques of Representation Theory. London Math. Soc. Stud. Texts, Vol. 65. Cambridge University Press, Cambridge (2006)Google Scholar
  2. 2.
    Bergeron N., Li H.: Algebraic structures on Grothendieck groups of a tower of algebras. J. Algebra 321(8), 2068–2084 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Björner, A., Brenti, F.: Combinatorics of Coxeter Groups. Grad. Texts in Math., Vol. 231. Springer, New York (2005)Google Scholar
  4. 4.
    Björner A., Wachs M.: Generalized quotients in Coxeter groups. Trans. Amer. Math. Soc. 308(1), 1–37 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chow, C.-O.: Noncommutative symmetric functions of type B. Ph.D. thesis. Massachusetts Institute of Technology, Cambridge (2001)Google Scholar
  6. 6.
    Duchamp G., Hivert F., Thibon J.-Y.: Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras. Internat. J. Algebra Comput. 12(5), 671–717 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Duchamp G., Klyachko A., Krob D., Thibon J.-Y.: Noncommutative symmetric functions III: deformations of Cauchy and convolution algebras. Discrete Math. Theor. Comput. Sci. 1(1), 159–216 (1997)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Duchamp G., Krob D., Leclerc B., Thibon J.-Y.: Fonctions quasi-symétriques, fonctions symétriques non-commutatives, et algébres de Hecke à q =  0, C. R. Acad. Sci. Paris 322(2), 107–112 (1996)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Fayers M.: 0-Hecke algebras of finite Coxeter groups. J. Pure Appl. Algebra 199(1-3), 27–41 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Geissinger L., Kinch D.: Representations of the hyperoctahedral groups. J. Algebra 53(1), 1–20 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gelfand I.M., Krob D., Lascoux A., Leclerc B., Retakh V.S., Thibon J.-Y.: Noncommutative symmetric functions. Adv. Math. 112(2), 218–348 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grinberg, D., Reiner, V.: Hopf algebras in Combinatorics. arXiv:1409.8356v3 (2014)
  13. 13.
    Huang J.: 0-Hecke algebra actions on coinvariants and flags. J. Algebraic Combin. 40(1), 245–278 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Huang J.: 0-Hecke algebra action on the Stanley-Reisner ring of the Boolean algebra. Ann. Combin. 19(2), 293–323 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Huang, J.: A uniform generalization of some combinatorial Hopf algebras. arXiv:1506.02962v2 (2015)
  16. 16.
    Krob D., Thibon J.-Y.: Noncommutative symmetric functions IV: quantum linear groups and Hecke algebras at q =  0. J. Algebraic Combin. 6(4), 339–376 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lam T., Lauve A., Sottile F.: Skew Littlewood-Richardson rules from Hopf algebras. Int. Math. Res. Not. IMRN 2011(6), 1205–1219 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Lascoux A.: Polynomial representations of the Hecke algebra of the symmetric group. Internat. J. Algebra Comput. 23(4), 803–818 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Malvenuto C., Reutenauer C.: Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(3), 967–982 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Norton P.N.: 0-Hecke algebras. J. Austral. Math. Soc. Ser. A 27(3), 337–357 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Graduate Texts in Mathematics, 203. Springer-Verlag, New York (2001)Google Scholar
  22. 22.
    Stanley, R.: Enumerative Combinatorics, Vol. 2. Cambridge University Press, Cambridge (1999)Google Scholar
  23. 23.
    Tewari V., van Willigenburg S.: Modules of the 0-Hecke algebra and quasisymmetric Schur functions. Adv. Math. 285, 1025–1065 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of Nebraska at KearneyKearneyUSA

Personalised recommendations