Comparing and Simplifying Distinct-Cluster Phylogenetic Networks
Abstract
Phylogenetic networks are rooted acyclic directed graphs in which the leaves are identified with members of a set X of species. The cluster of a vertex is the set of leaves that are descendants of the vertex. A network is “distinct-cluster” if distinct vertices have distinct clusters. This paper focuses on the set DC(X) of distinct-cluster networks whose leaves are identified with the members of X. For a fixed X, a metric on DC(X) is defined. There is a “cluster-preserving” simplification process by which vertices or certain arcs may be removed without changing the clusters of any remaining vertices. Many of the resulting networks may be uniquely determined without regard to the order of the simplifying operations.
Keywords
phylogeny network metric phylogenetic network clusterMathematics Subject Classification
92D15 05C20 05C38References
- 1.Allen B., Steel M.: Subtree transfer operations and their induced metrics on evolutionary trees. Ann. Combin. 5(1), 1–15 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Baroni M., Semple C., Steel M.: A framework for representing reticulate evolution. Ann. Combin. 8(4), 391–408 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Boucher Y., Douady C.J., Papke R.T., Walsh D.A., Boudreau M.E.R., Nesbo C.L., Case R.J., Doolittle W.F.: Lateral gene transfer and the origins of prokaryotic groups. Ann. Rev. Genet. 37, 283–328 (2003)CrossRefGoogle Scholar
- 4.Cardona G., Labrés M., Rossalló F., Valiente G.: A distance metric for a class of treesibling phylogenetic networks. Bioinform. 24(13), 1481–1488 (2008)CrossRefGoogle Scholar
- 5.Cardona G., Labrés M., Rossalló F., Valiente G.: On Nakhleh’s metric for reduced phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(4), 629–638 (2009)CrossRefGoogle Scholar
- 6.Cardona G., Labrés M., Rossalló F., Valiente G.: Metrics for phylogenetic networks I: generalizations of the Robinson-Foulds metric. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(1), 46–61 (2009)CrossRefGoogle Scholar
- 7.Cardona G., Rossalló F., Valiente G.: Comparison of tree-child phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(4), 552–569 (2009)CrossRefGoogle Scholar
- 8.Critchlow D., Pearl D., Qian C.: The triples distance for rooted bifurcating phylogenetic trees. Syst. Biol. 45(3), 323–334 (1996)CrossRefGoogle Scholar
- 9.Doolittle W.F., Bapteste E.: Pattern pluralism and the tree of life hypothesis. Proc. Natl. Acad. Sci. USA 104(7), 2043–2049 (2007)CrossRefGoogle Scholar
- 10.Gusfield D., Eddhu S., Langley C.: The fine structure of galls in phylogenetic networks. INFORMS J. Comput. 16(4), 459–469 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Harary, F.: Graph Theory. Addison-Wesley, Reading, Mass. (1969)Google Scholar
- 12.Huson D., Rupp R., Scornavacca C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
- 13.Lin Y., Rajan V., Moret B.: A metric for phylogenetic trees based on matching. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(4), 1014–1022 (2012)CrossRefGoogle Scholar
- 14.Mindell D.: The tree of life: metaphor, model, and heuristic Device. Syst. Biol. 62(3), 479–489 (2013)CrossRefGoogle Scholar
- 15.Moret B., Nakhleh L., Warnow T., Linder C.R., Tholse A., Padolina A., Sun J., Timme R.: Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE Trans. Comput. Biol. Bioinform. 1(1), 13–23 (2004)CrossRefGoogle Scholar
- 16.Morrison, D.: Introduction to Phylogenetic Networks. RJR Productions, Uppsala, Sweden (2011) http://www.rjr-productions.org/
- 17.Nakhleh L., Warnow T., Linder C.R., John K.: Reconstructing reticulate evolution in species — theory and practice. J. Comput. Biol. 12(5), 796–811 (2005)CrossRefGoogle Scholar
- 18.Rhymer J., Symberloff D.: Extinction by hybridization and introgression. Ann. Rev. Ecol. Syst. 27, 83–109 (1996)CrossRefGoogle Scholar
- 19.Robinson D.F.: Comparison of labeled trees with valency three. J. Combin. Theory Ser. B 11(2), 105–119 (1971)MathSciNetCrossRefGoogle Scholar
- 20.Robinson D., Foulds I.: Comparison of phylogenetic trees. Math. Biosci. 53(1-2), 131–147 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Semple C., Steel M.: Phylogenetics. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
- 22.van Iersel L., Keijsper J., Kelk S., Stouigie L., Hagen F., Boekhout T.: Constructing level-2 phylogenetic networks from triplets. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(4), 667–681 (2009)CrossRefGoogle Scholar
- 23.Waterman M., Smith T.: On the similarity of dendrograms. J. Theoret. Biol. 73(4), 789–800 (1978)MathSciNetCrossRefGoogle Scholar
- 24.Willson S.: Properties of normal phylogenetic networks. Bull. Math. Biol. 72(2), 340–358 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.