Annals of Combinatorics

, Volume 20, Issue 4, pp 917–938 | Cite as

Comparing and Simplifying Distinct-Cluster Phylogenetic Networks

  • Stephen J. WillsonEmail author
Open Access


Phylogenetic networks are rooted acyclic directed graphs in which the leaves are identified with members of a set X of species. The cluster of a vertex is the set of leaves that are descendants of the vertex. A network is “distinct-cluster” if distinct vertices have distinct clusters. This paper focuses on the set DC(X) of distinct-cluster networks whose leaves are identified with the members of X. For a fixed X, a metric on DC(X) is defined. There is a “cluster-preserving” simplification process by which vertices or certain arcs may be removed without changing the clusters of any remaining vertices. Many of the resulting networks may be uniquely determined without regard to the order of the simplifying operations.


phylogeny network metric phylogenetic network cluster 

Mathematics Subject Classification

92D15 05C20 05C38 


  1. 1.
    Allen B., Steel M.: Subtree transfer operations and their induced metrics on evolutionary trees. Ann. Combin. 5(1), 1–15 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baroni M., Semple C., Steel M.: A framework for representing reticulate evolution. Ann. Combin. 8(4), 391–408 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boucher Y., Douady C.J., Papke R.T., Walsh D.A., Boudreau M.E.R., Nesbo C.L., Case R.J., Doolittle W.F.: Lateral gene transfer and the origins of prokaryotic groups. Ann. Rev. Genet. 37, 283–328 (2003)CrossRefGoogle Scholar
  4. 4.
    Cardona G., Labrés M., Rossalló F., Valiente G.: A distance metric for a class of treesibling phylogenetic networks. Bioinform. 24(13), 1481–1488 (2008)CrossRefGoogle Scholar
  5. 5.
    Cardona G., Labrés M., Rossalló F., Valiente G.: On Nakhleh’s metric for reduced phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(4), 629–638 (2009)CrossRefGoogle Scholar
  6. 6.
    Cardona G., Labrés M., Rossalló F., Valiente G.: Metrics for phylogenetic networks I: generalizations of the Robinson-Foulds metric. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(1), 46–61 (2009)CrossRefGoogle Scholar
  7. 7.
    Cardona G., Rossalló F., Valiente G.: Comparison of tree-child phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(4), 552–569 (2009)CrossRefGoogle Scholar
  8. 8.
    Critchlow D., Pearl D., Qian C.: The triples distance for rooted bifurcating phylogenetic trees. Syst. Biol. 45(3), 323–334 (1996)CrossRefGoogle Scholar
  9. 9.
    Doolittle W.F., Bapteste E.: Pattern pluralism and the tree of life hypothesis. Proc. Natl. Acad. Sci. USA 104(7), 2043–2049 (2007)CrossRefGoogle Scholar
  10. 10.
    Gusfield D., Eddhu S., Langley C.: The fine structure of galls in phylogenetic networks. INFORMS J. Comput. 16(4), 459–469 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Harary, F.: Graph Theory. Addison-Wesley, Reading, Mass. (1969)Google Scholar
  12. 12.
    Huson D., Rupp R., Scornavacca C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  13. 13.
    Lin Y., Rajan V., Moret B.: A metric for phylogenetic trees based on matching. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(4), 1014–1022 (2012)CrossRefGoogle Scholar
  14. 14.
    Mindell D.: The tree of life: metaphor, model, and heuristic Device. Syst. Biol. 62(3), 479–489 (2013)CrossRefGoogle Scholar
  15. 15.
    Moret B., Nakhleh L., Warnow T., Linder C.R., Tholse A., Padolina A., Sun J., Timme R.: Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE Trans. Comput. Biol. Bioinform. 1(1), 13–23 (2004)CrossRefGoogle Scholar
  16. 16.
    Morrison, D.: Introduction to Phylogenetic Networks. RJR Productions, Uppsala, Sweden (2011)
  17. 17.
    Nakhleh L., Warnow T., Linder C.R., John K.: Reconstructing reticulate evolution in species — theory and practice. J. Comput. Biol. 12(5), 796–811 (2005)CrossRefGoogle Scholar
  18. 18.
    Rhymer J., Symberloff D.: Extinction by hybridization and introgression. Ann. Rev. Ecol. Syst. 27, 83–109 (1996)CrossRefGoogle Scholar
  19. 19.
    Robinson D.F.: Comparison of labeled trees with valency three. J. Combin. Theory Ser. B 11(2), 105–119 (1971)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Robinson D., Foulds I.: Comparison of phylogenetic trees. Math. Biosci. 53(1-2), 131–147 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Semple C., Steel M.: Phylogenetics. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  22. 22.
    van Iersel L., Keijsper J., Kelk S., Stouigie L., Hagen F., Boekhout T.: Constructing level-2 phylogenetic networks from triplets. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(4), 667–681 (2009)CrossRefGoogle Scholar
  23. 23.
    Waterman M., Smith T.: On the similarity of dendrograms. J. Theoret. Biol. 73(4), 789–800 (1978)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Willson S.: Properties of normal phylogenetic networks. Bull. Math. Biol. 72(2), 340–358 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsIowa State UniversityAmesUSA

Personalised recommendations