Advertisement

Annals of Combinatorics

, Volume 19, Issue 4, pp 661–669 | Cite as

Markov Bases and Generalized Lawrence Liftings

  • Hara Charalambous
  • Apostolos Thoma
  • Marius Vladoiu
Article

Abstract

Minimal Markov bases of configurations of integer vectors correspond to minimal binomial generating sets of the assocciated lattice ideal. We give necessary and sufficient conditions for the elements of a minimal Markov basis to be (a) inside the universal Gröbner basis and (b) inside the Graver basis. We study properties of Markov bases of generalized Lawrence liftings for arbitrary matrices \({A \in \mathcal{M}_{m \times n}(\mathbb{Z})}\) and \({B \in \mathcal{M}_{p \times n}(\mathbb{Z})}\) and show that in cases of interest the complexity of any two Markov bases is the same.

Mathematics Subject Classification

14M25 14L32 13P10 62H17 

Keywords

toric ideals Markov basis Graver basis Lawrence liftings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    4ti2 team: 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces. Available at: www.4ti2.de (2007)
  2. 2.
    Charalambous H., Katsabekis A., Thoma A.: Minimal systems of binomial generators and the indispensable complex of a toric ideal. Proc. Amer. Math. Soc. 135(11), 3443–3451 (2007)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Charalambous, H., Thoma, A., Vladoiu, M.: Markov bases of lattice ideals. arXiv:1303.2303v2
  4. 4.
    Diaconis P., Sturmfels B.: Algebraic algorithms for sampling from conditional distributions. Ann. Statist. 26(1), 363–397 (1998)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Drton, M., Sturmfels, B., Sullivant, S.: Lectures on Algebraic Statistics. Oberwolfach Seminars, Vol. 39. Birkhäuser Basel, Basel (2009)Google Scholar
  6. 6.
    Graver J.E.: On the foundations of linear and integer linear programming I. Math. Program. 9(2), 207–226 (1975)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Hemmecke R., Nairn K.A.: On the Gröbner complexity of matrices. J. Pure Appl. Algebra 213(8), 1558–1563 (2009)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Hoşten S., Sullivant S.: A finiteness theorem for Markov bases of hierarchical models. J. Combin. Theory Ser. A 114(2), 311–321 (2007)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ohsugi H., Hibi T.: Indispensable binomials of finite graphs. J. Algebra Appl. 4(4), 421–434 (2005)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Santos F., Sturmfels B.: Higher Lawrence configurations. J. Combin. Theory Ser. A 103(1), 151–164 (2003)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Sturmfels B.: Gröbner Bases and Convex Polytopes. University Lecture Series, Vol. 8. AMS, R.I. (1995)Google Scholar
  12. 12.
    Villarreal R.H.: Rees algebras of edge ideals. Comm. Algebra 23(9), 3513–3524 (1995)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Hara Charalambous
    • 1
  • Apostolos Thoma
    • 2
  • Marius Vladoiu
    • 3
  1. 1.Department of MathematicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of MathematicsUniversity of IoanninaIoanninaGreece
  3. 3.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations