Annals of Combinatorics

, Volume 19, Issue 3, pp 461–511 | Cite as

New Steps in Walks with Small Steps in the Quarter Plane: Series Expressions for the Generating Functions

  • I. KurkovaEmail author
  • K. Raschel


In this article we obtain new expressions for the generating functions counting (nonsingular) walks with small steps in the quarter plane. Those are given in terms of infinite series, while in the literature, the standard expressions use solutions to boundary value problems. We illustrate our results with three examples (an algebraic case, a transcendental D-finite case, and an infinite group model).


walks in the quarter plane counting generating function holonomy group of the walk Riemann surface elliptic functions uniformization universal covering 

Mathematics Subject Classification

05A15 30F10 30D05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, Washington (1964)Google Scholar
  2. 2.
    Bostan A., Kauers M.: The complete generating function for Gessel walks is algebraic. Proc. Amer. Math. Soc. 138, 3063–3078 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bostan, A., Kurkova, I., Raschel, K.: A human proof of Gessel’s lattice path conjecture. Preprint, arXiv:1309.1023 (2013)
  4. 4.
    Bostan A., Raschel K., Salvy B.: Non-D-finite excursions in the quarter plane. J. Combin. Theory Ser. A 121, 45–63 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bousquet-Mélou, M.: Walks in the quarter plane: Kreweras’ algebraic model. Ann. Appl. Probab. 15, 1451–1491 (2005)Google Scholar
  6. 6.
    Bousquet-Mélou, M., Mishna, M.: Walks with small steps in the quarter plane. Contemp. Math. 520, 1–40 (2010)Google Scholar
  7. 7.
    Bousquet-Mélou, M., Petkovšek, M.: Walks confined in a quadrant are not always D-finite. Theoret. Comput. Sci. 307(2), 257–276 (2003)Google Scholar
  8. 8.
    Chabat, B.: Introduction à l’analyse Complexe. Tome 1. Mir, Moscow (1990)Google Scholar
  9. 9.
    Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter-Plane. Springer-Verlag, Berlin (1999)Google Scholar
  10. 10.
    Fayolle, G., Raschel, K.: On the holonomy or algebraicity of generating functions counting lattice walks in the quarter-plane. Markov Process. Related Fields 16, 485–496 (2010)Google Scholar
  11. 11.
    Fayolle, G., Raschel, K.: Random walks in the quarter plane with zero drift: an explicit criterion for the finiteness of the associated group. Markov Process. Related Fields 17, 619–636 (2011)Google Scholar
  12. 12.
    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)Google Scholar
  13. 13.
    Flatto L., Hahn S.: Two parallel queues created by arrivals with two demands I. SIAM J. Appl. Math. 44, 1041–1053 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Flatto L.: Two parallel queues created by arrivals with two demands II. SIAM J. Appl. Math. 45, 861–878 (1985)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Jones, G., Singerman, D.: Complex Functions. Cambridge University Press, Cambridge (1987)Google Scholar
  16. 16.
    Kauers, M., Koutschan, C., Zeilberger, D.: Proof of Ira Gessel’s lattice path conjecture. Proc. Natl. Acad. Sci. USA 106, 11502–11505 (2009)Google Scholar
  17. 17.
    Kreweras, G.: Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers. Cahiers du B.U.R.O. 6, 5–105 (1965)Google Scholar
  18. 18.
    Kurkova, I., Raschel, K.: Explicit expression for the generating function counting Gessel’s walks. Adv. Appl. Math. 47, 414–433 (2011)Google Scholar
  19. 19.
    Kurkova, I., Raschel, K.: On the functions counting walks with small steps in the quarter plane. Publ. Math. Inst. Hautes Études Sci. 116, 69–114 (2012)Google Scholar
  20. 20.
    Malyshev, V.: Random Walks,Wiener-Hopf Equations in the Quarter Plane, Galois Automorphisms (in Russian). Lomonossov Moscow University Press, Moscow (1970)Google Scholar
  21. 21.
    Malyshev, V.: Positive random walks and Galois theory. Uspehi Mat. Nauk 26, 227–228 (1971)Google Scholar
  22. 22.
    Malyshev, V.: An analytical method in the theory of two-dimensional positive random walks. Siberian Math. J. 13, 1314–1329 (1972)Google Scholar
  23. 23.
    Melczer, S., Mishna, M.: Singularity analysis via the iterated kernel method. Combin. Probab. Comput. 23(5), 861–888 (2014)Google Scholar
  24. 24.
    Mishna, M., Rechnitzer, A.: Two non-holonomic lattice walks in the quarter plane. Theoret. Comput. Sci. 410, 3616–3630 (2009)Google Scholar
  25. 25.
    Raschel, K.: Counting walks in a quadrant: a unified approach via boundary value problems. J. Eur. Math. Soc. 14, 749–777 (2012)Google Scholar
  26. 26.
    Sansone, G., Gerretsen, J.: Lectures on the Theory of Functions of a Complex Variable. I. Holomorphic Functions. P. Noordhoff, Groningen (1960)Google Scholar
  27. 27.
    Stanley, R.: Enumerative Combinatorics. Vol. 2. Cambridge University Press, Cambridge (1999)Google Scholar
  28. 28.
    Watson G., Whittaker E.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1962)zbMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Laboratoire de Probabilités et, Modèles AléatoiresUniversité Pierre et Marie CurieParis Cedex 05France
  2. 2.CNRS & Fédération de recherche Denis Poisson & Laboratoire de Mathématiques et Physique ThéoriqueUniversité de ToursToursFrance

Personalised recommendations