Annals of Combinatorics

, Volume 19, Issue 1, pp 205–224 | Cite as

Counting Phylogenetic Networks

Article

Abstract

We give approximate counting formulae for the numbers of labelled general, treechild, and normal (binary) phylogenetic networks on n vertices. These formulae are of the form \({2^{\gamma n {\rm log}n+O(n)}}\), where the constant \({\gamma}\) is \({\frac{3}{2}}\) for general networks, and \({\frac{5}{4}}\) for tree-child and normal networks. We also show that the number of leaf-labelled tree-child and normal networks with \({\ell}\) leaves are both \({{2}^{2 \ell {\rm log} \ell +O( \ell )}}\). Further we determine the typical numbers of leaves, tree vertices, and reticulation vertices for each of these classes of networks.

Mathematics Subject Classification

05C30 92D15 05C80 

Keywords

phylogenetic networks tree-child networks normal networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bickner, D.R.: On normal networks. PhD thesis. Iowa State University, Ames, Iowa (2012)Google Scholar
  2. 2.
    Bollobás, B.: Random Graphs. Second edition. Cambridge University Press, Cambridge (2001)Google Scholar
  3. 3.
    Bóna,M., Flajolet, P.: Isomorphism and symmetries in random phylogenetic trees. J. Appl. Probab. 46(4), 1005–1019 (2009)Google Scholar
  4. 4.
    Cardona G., Rossello F., Valiente G.: Comparison of tree-child phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(4), 552–569 (2009)CrossRefGoogle Scholar
  5. 5.
    Flajolet, P., Odlyzko, A.: The average height of binary trees and other simple trees. J. Comput. System Sci. 25(2), 171–213 (1982)Google Scholar
  6. 6.
    Gill, J.: The k-assignment polytope, phylogenetic trees, and permutation patterns. PhD thesis. Linköping University, Sweden (2013)Google Scholar
  7. 7.
    Janson, S., \({{\L}}\)uczak, T., Ruciński, A.: Random Graphs. Wiley Interscience, New York (2000)Google Scholar
  8. 8.
    McKay, B.: The shape of a random acyclic digraph. Math. Proc. Cambridge Philos. Soc. 106(3), 459–465 (1989)Google Scholar
  9. 9.
    Robinson, R.W., Wormald, N.C.: Existence of long cycles in random cubic graphs. In: Jackson, D.M., Vanstone, S.A. (Eds.) Enumeration and Design, pp. 251–270. Academic Press, Toronto (1984)Google Scholar
  10. 10.
    Robinson, R.W.,Wormald, N.C.: Almost all cubic graphs are Hamiltonian. Random Structures Algorithms 3(2), 117–125 (1992)Google Scholar
  11. 11.
    Schröder, E.: Vier combinatorische probleme. Z. Math. Phys. 15, 361–376 (1870)Google Scholar
  12. 12.
    Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)Google Scholar
  13. 13.
    Vitter, J.S., Flajolet, P.: Average-case analysis of algorithms and data structures. In: van Leeuwen, J. (Ed.) Handbook of Theoretical Computer Science, Vol A: Algorithms and Complexity, pp. 431–524. Elsevier, Amsterdam (1990)Google Scholar
  14. 14.
    Willson, S.J.: Unique determination of some homoplasies at hybridization events. Bull. Math. Biol. 69(5), 1709–1725 (2007)Google Scholar
  15. 15.
    Willson, S.J.: Properties of normal phylogenetic networks. Bull. Math. Biol. 72, 340–358 (2010)Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Colin McDiarmid
    • 1
  • Charles Semple
    • 2
  • Dominic Welsh
    • 3
  1. 1.Department of StatisticsUniversity of OxfordOxfordUK
  2. 2.School of Mathematics and StatisticsUniversity of CanterburyChristchurchNew Zealand
  3. 3.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations