Annals of Combinatorics

, Volume 18, Issue 1, pp 117–126 | Cite as

Variations on a Result of Bressoud

  • Kağan Kurşungöz
  • James A. Sellers


The well-known Rogers-Ramanujan identities have been a rich source of mathematical study over the last fifty years. In particular, Gordon’s generalization in the early 1960s led to additional work by Andrews and Bressoud in subsequent years. Unfortunately, these results lacked a certain amount of uniformity in terms of combinatorial interpretation. In this work, we provide a single combinatorial interpretation of the series sides of these generating function results by using the concept of cluster parities. This unifies the aforementioned results of Andrews and Bressoud and also allows for a strikingly broader family of q-series results to be obtained. We close the paper by proving congruences for a “degenerate case” of Bressoud’s theorem.

Mathematics Subject Classification

05A17 11P83 


integer partition Rogers-Ramanujan-Gordon identities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlgren S.: Distribution of parity of the partition function in arithmetic progressions. Indag. Math. (N.S.) 10(2), 173–181 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Andrews G.E.: Some new partition theorems. J. Combin. Theory 2, 431–436 (1967)CrossRefzbMATHGoogle Scholar
  3. 3.
    Andrews G.E.: An analytic generalization of the Rogers-Ramanujan identities for odd moduli. Proc. Nat. Acad. Sci. USA 71, 4082–4085 (1974)CrossRefzbMATHGoogle Scholar
  4. 4.
    Andrews, G.E.: On the general Rogers-Ramanujan theorem. Memoir. Amer. Math. Soc. No. 152 (1974)Google Scholar
  5. 5.
    Andrews, G.E.: The Theory of Partitions. Addison-Wesley Publishing Company, Inc, Reading, MA (1976) Reissued: Cambridge University Press, Cambridge (1998)Google Scholar
  6. 6.
    Andrews G.E.: Parity in partition identities. Ramanujan J. 23(1-3), 45–90 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Boylan M., Ono K.: Parity of the partition function in arithmetic progressions, II. Bull. London Math. Soc. 33(5), 558–564 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bressoud D.M.: A generalization of the Rogers-Ramanujan identities for all moduli. J. Combin. Theory Ser. A 27(1), 64–68 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bressoud D.M.: An analytic generaliaztion of the Rogers-Ramanujan identities with interpretation. Quart. J. Math. Oxford Ser. (2) 31(4), 385–399 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bressoud D.M., Wagon S.: A Course in Computational Number Theory. Key College Publishing in cooperation with Springer, New York (2000)zbMATHGoogle Scholar
  11. 11.
    Gordon B.: A combinatorial generalization of the Rogers-Ramanujan identities. Amer. J. Math. 83, 393–399 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Hirschhorn M.D.: On the parity of p(n), II. J. Combin. Theory Ser. A 62(1), 128–138 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kaavya S.J.: Crank 0 partitions and the parity of the partition function. Int. J. Number Theory 7(3), 793–801 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kurşungöz K.: Cluster parity indices of partitions. Ramanujan J. 23, 195–213 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Kurşungöz K.: Parity considerations in Andrews-Gordon identities. European J. Combin. 31, 976–1000 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Ono K.: Parity of the partition function in arithmetic progressions. J. Reine Angew.Math. 472, 1–15 (1996)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Ono K.: Parity of the partition function. Adv. Math. 225(1), 349–366 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Radu S.: A proof of Subbarao’s conjecture. J. Reine Angew. Math. 672, 161–175 (2012)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Ramanujan, S.: Collected Papers of S. Ramanujan. Cambridge Univ. Press, London/New York (1927); reprinted by Chelsea, New York (1962)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesSabancı UniversityİstanbulTurkey
  2. 2.Department of MathematicsThe Pennsylvania State UniversityState CollegeUSA

Personalised recommendations