Advertisement

Annals of Combinatorics

, Volume 17, Issue 1, pp 229–250 | Cite as

Binary Cumulant Varieties

  • Bernd Sturmfels
  • Piotr ZwiernikEmail author
Article

Abstract

Algebraic statistics for binary random variables is concerned with highly structured algebraic varieties in the space of 2×2×···×2-tensors. We demonstrate the advantages of representing such varieties in the coordinate system of binary cumulants. Our primary focus lies on hidden subset models. Parametrizations and implicit equations in cumulants are derived for hyperdeterminants, for secant and tangential varieties of Segre varieties, and for certain context-specific independence models. Extending work of Rota and collaborators, we explore the polynomial inequalities satisfied by cumulants.

Mathematics Subject Classification

13P25 05A40 14Q15 60C05 

Keywords

algebraic statistics cumulants moments binary data context-specific independence hyperdeterminant Segre variety secant variety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruno W., Rota G.-C., Torney D.C.: Probability set functions. Ann. Combin. 3(1), 13–25 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bruynooghe, D., Wynn, H.: Differential cumulants, hierachical models and monomial ideals. arXiv:1102.2118Google Scholar
  3. 3.
    Drton, M., Sturmfels, B., Sullivant, S.: Lectures on Algebraic Statistics. Oberwolfach Seminars, Vol. 39, Birkhäuser, Basel (2009)Google Scholar
  4. 4.
    Duff, M.J.: String triality, black hole entropy, and Cayley’s hyperdeterminant. Phys. Rev. D 76(2), 025017 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Boston (1994)Google Scholar
  6. 6.
    Georgi, B., Schliep, A.: Context-specific independence mixture modeling for positional weight matrices. Bioinformatics, 22(14), e166–e173 (2006)Google Scholar
  7. 7.
    Grayson, D., Stillman, M.: Macaulay 2—a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
  8. 8.
    Hald A.: The early history of the cumulants and the Gram-Charlier series. Internat. Statist. Rev. 68(2), 137–153 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Holtz O., Sturmfels B.: Hyperdeterminantal relations among symmetric principal minors. J. Algebra 316(2), 634–648 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Huggins P., Sturmfels B., Yu J., Yuster D.: The hyperdeterminant and triangulations of the 4-cube. Math. Comp. 77(263), 1653–1679 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    McCullagh P.: Tensor Methods in Statistics. Chapman & Hall, London (1987)zbMATHGoogle Scholar
  12. 12.
    Miyake, A.: Classification of multipartite entangled states by multidimensional determinants. Phys. Rev. A (3) 67(1), 012108 (2003)Google Scholar
  13. 13.
    Oeding L.: Set-theoretic defining equations of the tangential variety of the Segre variety. J. Pure Appl. Algebra 215(6), 1516–1527 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Oeding L.: Set-theoretic defining equations of the variety of principal minors of symmetric matrices. Algebra Number Theory 5(1), 75–109 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Pachter L., Sturmfels B.: Algebraic Statistics for Computational Biology. Cambridge University Press, New York (2005)zbMATHCrossRefGoogle Scholar
  16. 16.
    Pistone G., Wynn H.P.: Cumulant varieties. J. Symbolic Comput. 41(2), 210–221 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Raicu, C.: Secant varieties of Segre-Veronese varieties. Algebra Number Theory (to appear)Google Scholar
  18. 18.
    Riener, C. et al.: Exploiting symmetries in SDP-relaxations for polynomial optimization. arXiv:1103.0486Google Scholar
  19. 19.
    Rostalski, P.: Bermeja—software for convex algebraic geometry. Available at http://math.berkeley.edu/~philipp/cagwiki
  20. 20.
    Rota G.-C., Roman S.: The umbral calculus. Adv. Math. 27(2), 95–188 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Rota G.-C., Shen J.: On the combinatorics of cumulants. J. Combin. Theory Ser. A 91(2), 283–304 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Schönhuth, A.: Complete identification of binary-valued hidden Markov processes. arXiv:1101.3712Google Scholar
  23. 23.
    Speed T.P.: Cumulants and partition lattices. Austral. J. Statist. 25(2), 378–388 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Stanley R.P.: Enumerative Combinatorics, Volume I. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  25. 25.
    Sumner J.G., Jarvis P.D.: Using the tangle: a consistent construction of phylogenetic distance matrices for quartets. Math. Biosci. 204(1), 49–67 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Torney D.C.: Binary cumulants. Adv. Appl. Math. 25(1), 34–40 (2000)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of StatisticsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations