Advertisement

Annals of Combinatorics

, Volume 17, Issue 1, pp 105–130 | Cite as

Cofree Compositions of Coalgebras

  • Stefan Forcey
  • Aaron Lauve
  • Frank SottileEmail author
Article

Abstract

We develop the notion of the composition of two coalgebras, which arises naturally in higher category theory and in the theory of species. We prove that the composition of two cofree coalgebras is again cofree, and we give sufficient conditions that ensure the composition is a one-sided Hopf algebra. We show that these conditions are satisfied when one coalgebra is a graded Hopf operad \({\mathcal{D}}\) and the other is a connected graded coalgebra with coalgebra map to \({\mathcal{D}}\). We conclude by computing the primitive elements for compositions of coalgebras built on the vertices of multiplihedra, composihedra, and hypercubes.

Mathematics Subject Classification

05E05 16W30 18D50 

Keywords

multiplihedron composihedron binary tree cofree coalgebra one-sided Hopf algebra operads species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguiar M., Mahajan S.: Monoidal Functors, Species and Hopf Algebras. American Mathematical Society, Providence, RI (2010)zbMATHGoogle Scholar
  2. 2.
    Aguiar M., Sottile F.: Structure of the Malvenuto-Reutenauer Hopf algebra of permutations. Adv. Math. 191(2), 225–275 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Aguiar M., Sottile F.: Structure of the Loday-Ronco Hopf algebra of trees. J. Algebra 295(2), 473–511 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bernstein M., Sloane N.J.A.: Some canonical sequences of integers. Linear Algebra Appl. 226–228, 57–72 (1995)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boardman J.M., Vogt R.M.: Homotopy Invariant Algebraic Structures on Topological Spaces. Springer-Verlag, Berlin (1973)zbMATHGoogle Scholar
  6. 6.
    Forcey S.: Convex hull realizations of the multiplihedra. Topology Appl. 156(2), 326–347 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Forcey S.: Quotients of the multiplihedron as categorified associahedra. Homology Homotopy Appl. 10(2), 227–256 (2008)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Forcey S., Lauve A., Sottile F.: Hopf structures on the multiplihedra. SIAM J. Discrete Math. 24(4), 1250–1271 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Forcey S., Springfield D.: Geometric combinatorial algebras: cyclohedron and simplex. J. Algebraic Combin. 32(4), 597–627 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Getzler, E., Jones, J.: Operads, homotopy algebra and iterated integrals for double loop spaces. arXiv:hep-th/9403055 (1994)Google Scholar
  11. 11.
    Loday J.-L., Ronco M.O.: Hopf algebra of the planar binary trees. Adv. Math. 139(2), 293–309 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Malvenuto C., Reutenauer C.: Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(3), 967–982 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Montgomery, S.: Hopf Algebras and Their Actions on Rings. CBMS Reg. Conf. Ser. Math. 28, Amer. Math. Soc., Providence (1993)Google Scholar
  14. 14.
    Sloane, N.J.A.: The on-line encyclopedia of integer sequences. Published electronically at www.research.att.com/~njas/sequences/
  15. 15.
    Stasheff J.: Homotopy associativity of H-spaces. I, II. Trans. Amer. Math. Soc. 108: 275–292; 293–312 (1963)Google Scholar
  16. 16.
    Stasheff, J.: H-Spaces from a Homotopy Point of View. Springer-Verlag, Berlin (1970)Google Scholar
  17. 17.
    Takeuchi M.: Free Hopf algebras generated by coalgebras. J. Math. Soc. Japan 23, 561–582 (1971)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Department of Theoretical and Applied MathematicsThe University of AkronAkronUSA
  2. 2.Department of MathematicsLoyola University of ChicagoChicagoUSA
  3. 3.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations