Advertisement

Annals of Combinatorics

, Volume 17, Issue 1, pp 71–103 | Cite as

Ideals of Graph Homomorphisms

  • Alexander Engström
  • Patrik Norén
Article

Abstract

In combinatorial commutative algebra and algebraic statistics many toric ideals are constructed from graphs. Keeping the categorical structure of graphs in mind we give previous results a more functorial context and generalize them by introducing the ideals of graph homomorphisms. For this new class of ideals we investigate how the topology of the graphs influences the algebraic properties. We describe explicit Gröbner bases for several classes, generalizing results by Hibi, Sturmfels, and Sullivant. One of our main tools is the toric fiber product, and we employ results by Engström, Kahle, and Sullivant. The lattice polytopes defined by our ideals include important classes in optimization theory, as the stable set polytopes.

Mathematics Subject Classification

05C60 68W30 13P25 13P10 62H17 

Keywords

graph homomorphisms toric ideals Gröbner bases algebraic statistics structural graph theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    4ti2 team: 4ti2—A software package for algebraic, geometric, and combinatorial problems on linear spaces. Available at www.4ti2.de
  2. 2.
    Anick D.J.: On the homology of associative algebras. Trans. Amer. Math. Soc. 296(2), 641–659 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Babson E., Kozlov D.N.: Proof of the Lovász conjecture. Ann. of Math. 2(165(3)), 965–1007 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bruns, W., Herzog, J.: Cohen-Macaulay Rings, Revised Edition. Cambridge Stud. Adv. Math. 39, Cambridge University Press, Cambridge (1998)Google Scholar
  5. 5.
    De Concini, C., Eisenbud, D., Procesi, C.: Hodge Algebras. Astérisque, 91, Société Mathématique de France, Paris (1982)Google Scholar
  6. 6.
    Cox D., Little J., O’Shea D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd Edit. Springer, New York (2007)zbMATHGoogle Scholar
  7. 7.
    Develin M., Sullivant S.: Markov bases of binary graph models. Ann. Combin. 7(4), 441–466 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Diaconis P., Sturmfels B.: Algebraic algorithms for sampling from conditional distributions. Ann. Statist. 26, 363–397 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Diestel, R.: Graph Theory, 4th Edit. Grad. Texts in Math. 173, Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Dobra, A. et al.: Algebraic statistics and contingency table problems: log-linear models, likelihood estimation, and disclosure limitation. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, pp. 63–88. Springer, New York (2009)Google Scholar
  11. 11.
    Drton M., Sturmfels B., Sullivant S.: Lectures on Algebraic Statistics. Birkhäuser Verlag, Basel (2009)zbMATHCrossRefGoogle Scholar
  12. 12.
    Engström A.: Cut ideals of K 4-minor free graphs are generated by quadrics. Michigan Math. J. 60(3), 705–714 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Engström, A., Kahle, T., Sullivant, S.: Multigraded commutative algebra of graph decompositions. arxiv:1102.2601Google Scholar
  14. 14.
    Eriksson N. et al.: Polyhedral conditions for the nonexistence of the MLE for hierarchical log-linear models. J. Symbolic Comput. 41(2), 222–233 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fröberg, R.: Koszul algebras. In: Dobbs, D.E., Fontana,M., Kabbaj, S.-E. (eds.) Advances in Commutative Ring Theory, pp. 337–350. Dekker, New York (1999)Google Scholar
  16. 16.
    Fulton, W.: Introduction to Toric Varieties. Ann. of Math. Stud. 131. Princeton University Press, Princeton, NJ (1993)Google Scholar
  17. 17.
    Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes—Combinatorics and Computation, pp. 43–73. DMV Sem. 29, Birkhäuser, Basel (2000)Google Scholar
  18. 18.
    Geiger D., Meek C., Sturmfels B.: On the toric algebra of graphical models. Ann. Statist. 34(3), 1463–1492 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, 2nd Edit. Algorithms Combin. 2. Springer-Verlag, Berlin (1993)Google Scholar
  20. 20.
    Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford Lecture Ser. Math. Appl. 28. Oxford University Press, Oxford (2004)Google Scholar
  21. 21.
    Herzog J., Hibi T.: Distributive lattices, bipartite graphs and Alexander duality. J. Algebraic Combin. 22(3), 289–302 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Hibi T., Watanabe K.: Study of three-dimensional algebras with straightening laws which are Gorenstein domains. I, Hiroshima Math. J. 15(1), 27–54 (1985)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hibi, T.: Distributive lattices, affine semigroup rings and algebras with straightening laws. In: Nagata, M., Matsumura, H. (eds.) Commutative Algebra and Combinatorics, pp. 93–109. Adv. Stud. Pure Math. Vol. 11. North-Holland, Amsterdam (1987)Google Scholar
  24. 24.
    Hochster M.: Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes. Ann. of Math. 2(96), 318–337 (1972)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hosten S., Sullivant S.: Gröbner bases and polyhedral geometry of reducible and cyclic models. J. Combin. Theory Ser. A 100(2), 277–301 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Kahle T.: Neighborliness of marginal polytopes. Beiträge Algebra Geom. 51(1), 45–56 (2010)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Kahle, T., Rauh, J.: The markov bases database. Available at markov-bases.de Google Scholar
  28. 28.
    De Loera J.A. et al.: Expressing combinatorial problems by systems of polynomial equations and Hilbert’s Nullstellensatz. Combin. Probab. Comput. 18(4), 551–582 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Lovász L.: Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A 25(3), 319–324 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Lovász, L.: Semidefinite programs and combinatorial optimization. In: Reed, B.A., Sales, C.L. (eds.) Recent Advances in Algorithms and Combinatorics, pp. 137–194. Springer, New York (2003)Google Scholar
  31. 31.
    Mahjoub A.R.: On the stable set polytope of a series-parallel graph. Math. Programming 40(1), 53–57 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Miller E., Sturmfels B.: Combinatorial Commutative Algebra. Springer-Verlag, New York (2005)Google Scholar
  33. 33.
    Robertson N., Seymour P.D.: Graph minors. XX. Wagner’s conjecture. J. Combin. Theory Ser. B 92(2), 325–357 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Stanley, R.P.: Enumerative Combinatorics. Vol. 1. Cambridge University Press, Cambridge (1997)Google Scholar
  35. 35.
    Sturmfels B.: Gröbner Bases and Convex Polytopes. American Mathematical Society, Providence (1996)zbMATHGoogle Scholar
  36. 36.
    Sturmfels B., Sullivant S.: Toric geometry of cuts and splits. Michigan Math. J. 57, 689–709 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Sullivant S.: Toric fiber products. J. Algebra 316(2), 560–577 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Ziegler, G.M.: Lectures on Polytopes. Grad. Texts in Math. 152, Springer-Verlag, New York (1995)Google Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Department of MathematicsAalto UniversityAaltoFinland

Personalised recommendations