Annals of Combinatorics

, Volume 16, Issue 4, pp 847–870 | Cite as

Limiting Distributions for the Number of Inversions in Labelled Tree Families

  • Alois PanholzerEmail author
  • Georg Seitz


We consider the so-called simple families of labelled trees, which contain, e.g., ordered, unordered, binary, and cyclic labelled trees as special instances, and study the global and local behaviour of the number of inversions. In particular, we obtain limiting distribution results for the total number of inversions as well as the number of inversions induced by the node labelled j in a random tree of size n.

Mathematics Subject Classification

05C05 60F05 05A16 


inversions simply generated trees limiting distributions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fill J.A., Flajolet P., Kapur N.: Singularity analysis, Hadamard products, and tree recurrences. J. Comput. Appl. Math. 174(2), 271–313 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Fill J.A., Kapur N.: Limiting distributions for additive functionals on Catalan trees. Theoret. Comput. Sci. 326(1-3), 69–102 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Flajolet P., Louchard G.: Analytic variations on the Airy distribution. Algorithmica 31(3), 361–377 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Flajolet P., Odlyzko A.: Singularity analysis of generating functions. SIAM J. Discrete Math. 3(2), 216–240 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Flajolet P., Poblete P., Viola A.: On the analysis of linear probing hashing. Algorithmica 22(4), 490–515 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Flajolet P., Sedgewick R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)zbMATHCrossRefGoogle Scholar
  7. 7.
    Gessel I.M., Sagan B.E., Yeh Y.-N.: Enumeration of trees by inversions. J. Graph Theory 19(4), 435–459 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Janson S.: Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas. Probab. Surv. 4, 80–145 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kung J.P.S., Yan C.: Exact formulas for moments of sums of classical parking functions. Adv. Appl. Math. 31, 215–241 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Loève M.: Probability Theory I. 4th Edit. Springer-Verlag, New York (1977)zbMATHCrossRefGoogle Scholar
  11. 11.
    Louchard G.: Kac’s formula, Lévy’s local time and Brownian excursion. J. Appl. Probab. 21, 479–499 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Louchard, G., Prodinger, H.: The number of inversions in permutations: a saddle point approach. J. Integer Seq. 6(2), Art. 03.2.8 (2003)Google Scholar
  13. 13.
    Mallows C., Riordan J.: The inverson enumerator for labeled trees. Bull. Amer. Math. Soc. 74, 92–94 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Meir A., Moon J.W.: On the altitude of nodes in random trees. Canad. J. Math. 30, 997–1015 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Panholzer A.: The distribution of the size of the ancestor-tree and of the induced spanning subtree for random trees. Random Structures Algorithms 25, 179–207 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Schwerdtfeger U., Richard C., Thatte B.: Area limit laws for symmetry classes of staircase polygons. Combin. Probab. Comput. 19, 441–461 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Institut für Diskrete Mathematik und GeometrieTechnische Universität WienWienAustria

Personalised recommendations