Advertisement

Annals of Combinatorics

, Volume 16, Issue 1, pp 121–188 | Cite as

The Inverse Conjecture for the Gowers Norm over Finite Fields in Low Characteristic

  • Terence Tao
  • Tamar Ziegler
Article

Abstract

We establish the inverse conjecture for the Gowers norm over finite fields, which asserts (roughly speaking) that if a bounded function \({f : V \rightarrow \mathbb{C}}\) on a finite-dimensional vector space V over a finite field \({\mathbb{F}}\) has large Gowers uniformity norm \({{\parallel{f}\parallel_{U^{s+1}(V)}}}\) , then there exists a (non-classical) polynomial \({P: V \rightarrow \mathbb{T}}\) of degree at most s such that f correlates with the phase e(P) = e iP . This conjecture had already been established in the “high characteristic case”, when the characteristic of \({\mathbb{F}}\) is at least as large as s. Our proof relies on the weak form of the inverse conjecture established earlier by the authors and Bergelson [3], together with new results on the structure and equidistribution of non-classical polynomials, in the spirit of the work of Green and the first author [22] and of Kaufman and Lovett [28].

Mathematics Subject Classification

11B30 11T06 

Keywords

finite fields polynomials Gowers uniformity norms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing flow-degree polynomials over GF(2). In: Arora, S. et al. (eds.) Approximation, Randomization, and Combinatorial Optimization, pp. 188–199. Spinger, Berlin (2003). Also: Testing Reed-Muller codes. IEEE Trans. Inform. Theory 51(11), 4032–4039 (2005)Google Scholar
  2. 2.
    Austin T.: On the norm convergence of nonconventional ergodic averages. Ergodic Theory Dynam. Systems 30(2), 321–338 (2010)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bergelson V., Tao T., Ziegler T.: An inverse theorem for the uniformity seminorms associated with the action of \({\mathbb{F}_p^\infty}\) . Geom. Funct. Anal. 19(6), 1539–1596 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bergelson V., Leibman A., McCutcheon R.: Polynomial Szemerédi theorems for countable modules over integral domains and finite fields. J. Anal. Math. 95, 243–296 (2005)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bogdanov A., Viola E.: Pseudorandom bits for polynomials. SIAM J. Comput. 39(6), 2464–2486 (2010)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Camarena, O., Szegedy, B.: Nilspaces, nilmanifolds and their morphisms. Preprint. arXiv:1009.3825 (2010)Google Scholar
  7. 7.
    Frantzikinakis N., Host B., Kra B.: Multiple recurrence and convergence for sequences related to the prime numbers. J. Reine Angew. Math. 611, 131–144 (2007)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Furstenberg H.: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31, 204–256 (1977)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Furstenberg H., Katznelson Y.: A density version of the Hales-Jewett theorem. J. Anal. Math. 57, 64–119 (1991)MathSciNetMATHGoogle Scholar
  10. 10.
    Gödel K.: The consistency of the axiom of choice and of the generalized continuumhypothesis. Proc. Natl. Acad. Sci. USA 24(12), 556–557 (1938)CrossRefGoogle Scholar
  11. 11.
    Gowers T.: A new proof of Szemerédi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8(3), 529–551 (1998)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Gowers T.: A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11(3), 465–588 (2001)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gowers T.: Decompositions, approximate structure, transference, and the Hahn-Banach theorem. Bull. Lond. Math. Soc. 42(4), 573–606 (2010)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Gowers T., Wolf J.: The true complexity of a system of linear equations. Proc. Lond. Math. Soc. (3) 100(1), 155–176 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Gowers, T., Wolf, J.: Linear forms and quadratic uniformity for functions on \({\mathbb{F}_p^n}\). Preprint.Google Scholar
  16. 16.
    Gowers T., Wolf J.: Linear forms and higher-degree uniformity for functions on \({\mathbb{F}_p^n}\) . Geom. Funct. Anal. 21(1), 36–69 (2011)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Green B., Tao T.: The primes contain arbitrarily long arithmetic progressions. Ann. of Math. 167(2), 481–547 (2008)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Green B., Tao T.: An inverse theorem for the Gowers U 3(G) norm. Proc. Edinburgh Math. Soc. (2) 51(1), 73–153 (2008)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Green B., Tao T.: Linear equations in primes. Ann. of Math. (2) 171(3), 1753–1850 (2010)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Green B., Tao T.: New bounds for Szemerédi’s Theorem, I: progressions of length 4 in finite field geometries. Proc. Lond. Math. Soc. (3) 98(2), 365–392 (2009)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Green, B., Tao, T.: The quantitative behaviour of polynomial orbits on nilmanifolds. Ann. of Math. (2) (to appear)Google Scholar
  22. 22.
    Green B., Tao T.: The distribution of polynomials over finite fields, with applications to the Gowers norms. Contrib. Discrete Math. 4(2), 1–36 (2009)MathSciNetMATHGoogle Scholar
  23. 23.
    Green, B., Tao, T.: An arithmetic regularity lemma, an associated counting lemma, and applications. PreprintGoogle Scholar
  24. 24.
    Green, B., Tao, T., Ziegler, T.: An inverse theorem for the Gowers U s+1[N] norm. PreprintGoogle Scholar
  25. 25.
    Hall P.: A contribution to the theory of groups of prime-power order. Proc. London Math. Soc. (2) 36(1), 29–95 (1934)CrossRefGoogle Scholar
  26. 26.
    Host B., Kra B.: Nonconventional ergodic averages and nilmanifolds. Ann. of Math. (2) 161(1), 397–488 (2005)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Host B., Kra B.: Parallelepipeds, nilpotent groups and Gowers norms. Bull. Soc. Math. France 136(3), 405–437 (2008)MathSciNetMATHGoogle Scholar
  28. 28.
    Kaufman, T., Lovett, S.: Worst case to average case reductions for polynomials. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 166–175. IEEE Computer Society, Los Alamitos, CA (2008)Google Scholar
  29. 29.
    Lazard M.: Sur certaines suites d’éléments dans les groupes libres et leurs extensions. C. R. Acad. Sci. Paris 236, 36–38 (1953)MathSciNetMATHGoogle Scholar
  30. 30.
    Leibman A.: Polynomial sequences in groups. J. Algebra 201(1), 189–206 (1998)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Leibman A.: Polynomial mappings of groups. Israel J. Math. 129, 29–60 (2002)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Loeb P.A.: Conversion from nonstandard to standard measure spaces and applications in probability theory. Trans. Amer. Math. Soc. 211, 113–122 (1975)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Lovett, S., Meshulam, R., Samorodnitsky, A.: Inverse conjecture for the Gowers norm is false. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing held in Victoria, BC, May 17-20, 2008, pp. 547–556. ACM, New York (2008)Google Scholar
  34. 34.
    Petresco J.: Sur les commutateurs. Math. Z. 61, 348–356 (1954)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Samorodnitsky, A.: Low-degree tests at large distances. In: Feige, U. (ed.) STOC’07–Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pp. 506–515. ACM, New York (2007)Google Scholar
  36. 36.
    Sudan M., Trevisan L., Vadhan S.: Pseudorandom generators without the XOR lemma. J. Comput. System Sci. 62(2), 236–266 (2001)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Szegedy, B.: Gowers norms, regularization and limits of functions on abelian groups. Preprint. Avaible at arXiv:1010.6211 (2010)Google Scholar
  38. 38.
    Szegedy, B.: Structure of finite nilspaces and inverse theorems for the Gowers norms in bounded exponent groups. Preprint. Avaible at arXiv:1011.1057 (2010)Google Scholar
  39. 39.
    Tao T.: A quantitative ergodic theory proof of Szemerédi’s theorem. Electron. J. Combin. 13(1), #R99 (2006)Google Scholar
  40. 40.
    Tao, T.: Structure and randomness in combinatorics. In: FOCS’07: Proceedings of the 48th Annual Symposium on Foundations of Computer Science, pp. 3–18. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  41. 41.
    Tao, T.: Poincaré’s Legacies, Vol I., American Mathematical Society, Providence (2009)Google Scholar
  42. 42.
    Tao, T., Vu, V.: Additive Combinatorics, Cambridge Univ. Press, Cambridge (2006)Google Scholar
  43. 43.
    Tao T., Ziegler T.: The inverse conjecture for the Gowers norm over finite fields via the correspondence principle. Anal. PDE 3(1), 1–20 (2010)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Towsner, H.: A correspondence principle for the Gowers norms. Preprint. Avaible at arXiv:0905.0493 (2009)Google Scholar
  45. 45.
    Varnavides P.: On certain sets of positive density. J. London Math. Soc. 34, 358–360 (1959)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Ziegler T.: Universal characteristic factors and Furstenberg averages. J. Amer. Math. Soc. 20(1), 53–97 (2007)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of MathematicsUCLALos AngelesUSA
  2. 2.Department of MathematicsTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations