A ‘Non-Additive’ Characterization of \({\wp}\)-Adic Norms
- 59 Downloads
Abstract
For F a \({\wp}\)-adic field together with a \({\wp}\)-adic valuation, we present a new characterization for a map \({p: F^{n} \rightarrow {\mathbb R}\cup\{-\infty}\}\) to be a \({\wp}\)-adic norm on the vector space F n . This characterization was motivated by the concept of tight maps — maps that naturally arise within the theory of valuated matroids and tight spans. As an immediate consequence, we show that the two descriptions of the affine building of SL n (F) in terms of (i) \({\wp}\)-adic norms given by Bruhat and Tits and (ii) tight maps given by Terhalle essentially coincide. The result suggests that similar characterizations of affine buildings of other classical groups should exist, and that the theory of affine buildings may turn out as a particular case of a yet to be developed geometric theory of valuated (and δ-valuated) matroids and their tight spans providing simply-connected G-spaces for large classes of appropriately specified groups G that could serve as a basis for an affine variant of Gromov’s theory.
Mathematics Subject Classification
20E42Keywords
buildings affine buildings \({\wp}\)-adic norms tropical geometry of Grassmann-Plücker varieties matroids valuated matroids tight spanReferences
- 1.Bachem A., Dress A., Wenzel W.: Five variations on a theme by Gyula Farkas. Adv. App. Math. 13(2), 160–185 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
- 2.Bogart T., Jensen A., Speyer D., Sturmfels B., Thomas R.: Computing tropical varieties. J. Symbolic Comput. 42(1), 54–73 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
- 3.Bridson M.R., Häfliger A.: Metric Spaces of Non-Positive Curvature. Springer-Verlag, Berlin (1999)zbMATHGoogle Scholar
- 4.Brown K.S.: Buildings. Springer-Verlag, Berlin/New York (1989)zbMATHGoogle Scholar
- 5.Bruhat F., Tits J.: Schémas en groupes et immeubles des groupes classiques sur un corps local. Bull. Soc. Math. France 112, 259–301 (1984)zbMATHMathSciNetGoogle Scholar
- 6.Bruhat F., Tits J.: Errata: Group schemes and buildings of classical groups over a local field. Bull. Soc. Math. France 115(2), 194 (1987)MathSciNetGoogle Scholar
- 7.Cohen I.S.: On non-Archimedean normed spaces. Indag. Math. 10, 244–249 (1948)Google Scholar
- 8.Develin M., Sturmfels B.: Tropical convexity. Doc. Math. 9, 1–27 (2004)zbMATHMathSciNetGoogle Scholar
- 9.Dress A.: Trees, tight extensions of metric spaces and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces. Adv. Math. 53(3), 321–402 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
- 10.Dress A., Moulton V., Terhalle W.: T-theory—an overview. European J. Combin. 17(2-3), 161–175 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
- 11.Dress A., Terhalle W.: A combinatorial approach to \({\wp}\)-adic geometry. Geom. Dedicata 46(2), 127–148 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
- 12.Dress A., Terhalle W.: The tree of life and other affine buildings. Doc. Math. Extra Vol. III, 565–574 (1998)Google Scholar
- 13.Dress A.: Duality theory for finite and infinite matroids with coefficients. Adv. Math. 59(2), 97–123 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
- 14.Dress A., Wenzel W.: Valuated matroids: a new look at the greedy algorithm. Appl. Math. Lett. 3(2), 33–35 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
- 15.Dress A., Wenzel W.: A greedy-algorithm characterization of valuated Δ-matroids. Appl. Math. Lett. 4(6), 55–58 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
- 16.Dress A., Wenzel W.: Valuated matroids. Adv. Math. 93(2), 214–250 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
- 17.Garret P.: Buildings and Classical Groups. Chapman & Hall, London (1997)Google Scholar
- 18.Goldman O., Iwahori N.: The space of \({\mathfrak p}\)-adic norms. Acta Math. 109, 137–177 (1963)CrossRefzbMATHMathSciNetGoogle Scholar
- 19.Gromov, M.: Hyperbolic groups. In: Gerstin, S. (ed.) Essays in Group Theory, pp. 75–263. Springer-Verlag, New York (1987)Google Scholar
- 20.Joswig M., Sturmfels B., Yu J.: Affine buildings and tropical convexity. Albanian J. Math. 1(4), 187–211 (2007)zbMATHMathSciNetGoogle Scholar
- 21.Monna, A.F.: Sur les espaces linéaires normés I-IV. Indag. Math. 8, 643–653, 654–660, 632–689, 690–700 (1946)Google Scholar
- 22.Murota K.: Matrices and Matroids for Systems Analysis. Springer-Verlag, Berlin (2000)zbMATHGoogle Scholar
- 23.Ronan M.: Lectures on Buildings. Academic Press, Boston (1989)zbMATHGoogle Scholar
- 24.Speyer D., Sturmfels B.: The tropical Grassmannian. Adv. Geom. 4(3), 389–411 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
- 25.Terhalle, W.: Ein kombinatorischer Zugang zu \({\wp}\)-adischer Geometrie: Bewertete Matroide, Bäume und Gebäude. Dissertation, Universität Bielefeld, Bielefeld (1992)Google Scholar
- 26.Terhalle, W.: Matroidal trees: a unifying theory of treelike spaces and their ends. Habilitationsschrift, Universität Bielefeld, Bielefeld (1998)Google Scholar