Advertisement

Annals of Combinatorics

, 13:271 | Cite as

On Minkowski Sums of Simplices

  • Geir Agnarsson
  • Walter D. Morris
Article

Abstract

We investigate the structure of the Minkowski sum of standard simplices in \({{\mathbb R}^r}\). In particular, we investigate the one-dimensional structure, the vertices, their degrees and the edges in the Minkowski sum polytope.

AMS Subject Classification

52B05 52B11 05C07 

Keywords

polytope Minkowski sum zonotope 

References

  1. 1.
    Sturmfels, B.: Personal communication, 2005.Google Scholar
  2. 2.
    Conca A. (2007) Linear spaces, transversal polymatroids and ASL domains. J. Algebraic Combin. 25: 25–41zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Edmonds J. (1970) Submodular functions, Matroids and certain polyhedra. In: Guy R., Hanani H., Sauer N., Schonheim J. (eds) Combinatorial Structures and Their Applications. Gordon and Breach, New York, pp 69–87Google Scholar
  4. 4.
    Feichtner E.M., Sturmfels B. (2005) Matroid polytopes, nested sets and Bergman fans. Port. Math. 62: 437–468zbMATHMathSciNetGoogle Scholar
  5. 5.
    Fisher D., Fraughnaugh K., Langley L., West D. (1997) The Number of dependent arcs in an acyclic orientation. J. Combin. Theory Ser. B 71: 73–78zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gawrilow E., Joswig M. (2000) Polymake: a framework for analyzing convex polytopes. In: Kalai G., Ziegler G.M. (eds) Polytopes—Combinatorics and Computation. Birkhäuser, Basel, pp 43–74Google Scholar
  7. 7.
    Herzog J., Hibi T. (2002) Discrete polymatroids. J. Algebraic Combin. 16: 239–268zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Klee V., Walkup D. (1967) The d-step conjecture for polyhedra of dimension d < 6. ActaMath. 117: 53–78zbMATHMathSciNetGoogle Scholar
  9. 9.
    Mantel W. (1907) Problem 28, Wiskundige Opgaven. 10: 60–61Google Scholar
  10. 10.
    Morton J., Pachter L., Shiu A., Sturmfels B., Wienand O. (2006) Geometry of Rank Tests. In: Studeny M., Vomlel J. (eds) Third European Workshop on Probabilistic Graphical Models. Czech Republic, Prague, pp 207–214Google Scholar
  11. 11.
    Postnikov A. (2009) Permutohedra, associahedra, and beyond. Internat. Math. Res. Notices IMRN 2009: 1026–1106zbMATHMathSciNetGoogle Scholar
  12. 12.
    Turán P. (1941) Eine extremalaufgabe aus der graphentheorie. Mat. Fiz. Lapok 48: 436–452zbMATHMathSciNetGoogle Scholar
  13. 13.
    West D. (1995) Acyclic orientations of complete bipartite graphs. Discrete Math. 138: 393–396zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ziegler G.M. (1995) Lectures on polytopes. Springer-Verlag, New YorkzbMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of Mathematical SciencesGeorge Mason UniversityFairfaxUSA

Personalised recommendations