Annals of Combinatorics

, Volume 12, Issue 4, pp 403–416 | Cite as

Precise Logarithmic Asymptotics for the Right Tails of Some Limit Random Variables for Random Trees

  • James Allen FillEmail author
  • Svante Janson


For certain random variables that arise as limits of functionals of random finite trees, we obtain precise asymptotics for the logarithm of the right-hand tail. Our results are based on the facts (i) that the random variables we study can be represented as functionals of a Brownian excursion and (ii) that a large deviation principle with good rate function is known explicitly for Brownian excursion. Examples include limit distributions of the total path length and of the Wiener index in conditioned Galton-Watson trees (also known as simply generated trees). In the case of Wiener index (where we recover results proved by Svante Janson and Philippe Chassaing by a different method) and for some other examples, a key constant is expressed as the solution to a certain optimization problem, but the constant’s precise value remains unknown.


large deviations tail asymptotics Galton-Watson trees simply generated families of trees Brownian excursion variational problems total path length Wiener index 

AMS Subject Classification

60F10 60C05 60J65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Aldous, The continuum random tree II: an overview, In: Stochastic Analysis, London Math. Soc. Lecture Note Ser., Vol. 167, M.T. Barlow and N.H. Bingham, Eds. Cambridge Univ. Press, Cambridge, (1991) pp. 23–70.Google Scholar
  2. 2.
    Aldous D.: The continuum random tree III. Ann. Probab. 21(1), 248–289 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Biane P., Pitman J., Yor M.: Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull. Amer. Math. Soc. (N.S.) 38(4), 435–465 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bousquet-Mélou M., Janson S.: The density of the ISE and local limit laws for embedded trees. Ann. Appl. Probab. 16(3), 1597–1632 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cameron R.H., Martin W.T.: Transformations of Wiener integrals under translations. Ann. of Math. 2(45), 386–396 (1944)CrossRefMathSciNetGoogle Scholar
  6. 6.
    P. Chassaing, J.F. Marckert, and M. Yor, The height and width of simple trees, In: Mathematics and Computer Science, Birkh?auser, Basel, (2000) pp. 17–30.Google Scholar
  7. 7.
    Chung K.L.: Excursions in Brownian motion. Ark. Mat. 14(2), 155–177 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Csörgő M., Shi Z., Yor M.: Some asymptotic properties of the local time of the uniform empirical process. Bernoulli 5(6), 1035–1058 (1999)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Davies L.: Tail probabilities for positive random variables with entire characteristic functions of very regular growth. Z. Angew. Math. Mech. 56(3), T334–T336 (1976)Google Scholar
  10. 10.
    Dembo A., Zeitouni O.: Large Deviations Techniques and Applications. Jones and Bartlett Publishers, Boston, MA (1993)zbMATHGoogle Scholar
  11. 11.
    J.A. Fill and S. Janson, Brownian excursion representation for the sum of αth powers of subtree sizes for conditioned Galton-Watson trees, in preparation.Google Scholar
  12. 12.
    Fill J.A., Kapur N.: Limiting distributions for additive functionals on Catalan trees. Theoret. Comput. Sci. 326(1-3), 69–102 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    J.A. Fill and N. Kapur, An invariance principle for simply generated families of trees, unpublished manuscript.Google Scholar
  14. 14.
    J.A. Fill and N. Kapur, Catalan trees with toll (n α): asymptotics of moments for α ≥ 1, unpublished manuscript.Google Scholar
  15. 15.
    Flajolet P., Gao Z., Odlyzko A., Richmond B.: The distribution of heights of binary and other simple trees. Combin. Probab. Comput. 2(2), 145–156 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Janson S.: Gaussian Hilbert Spaces. Cambridge University Press, Cambridge UK (1997)zbMATHGoogle Scholar
  17. 17.
    Janson S.: The Wiener index of simply generated random trees. Random Structures Algorithms 22(4), 337–358 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Janson S.: Random cutting and records in deterministic and random trees. Random Structures Algorithms 29(2), 139–179 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Janson S.: Left and right pathlengths in random binary trees. Algorithmica 46(3-4), 419–429 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Janson S., Chassaing P.: The center of mass of the ISE and the Wiener index of trees. Electron. Comm. Probab. 9, 178–187 (2004)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Kallenberg O.: Foundations of Modern Probability, 2nd Ed. Springer-Verlag, New York (2002)zbMATHGoogle Scholar
  22. 22.
    Kasahara Y.: Tauberian theorems of exponential type. J. Math. Kyoto Univ. 18(2), 209–219 (1978)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Kennedy D.P.: The distribution of the maximum Brownian excursion. J. Appl. Probab. 13(2), 371–376 (1976)zbMATHCrossRefGoogle Scholar
  24. 24.
    Knessl C., Szpankowski W.: Quicksort algorithm again revisited. Discrete Math. Theor. Comput. Sci. 3, 43–64 (1999)zbMATHGoogle Scholar
  25. 25.
    Marckert J.-F.: The rotation correspondence is asymptotically a dilatation. Random Structures Algorithms 24(2), 118–132 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Revuz D., Yor M.: Continuous Martingales and Brownian Motion, 3rd Ed. Springer- Verlag, Berlin (1999)zbMATHGoogle Scholar
  27. 27.
    Serlet L.: A large deviation principle for the Brownian snake. Stochastic Process. Appl. 67(1), 101–115 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Vervaat W.: A relation between Brownian bridge and Brownian excursion. Ann. Probab. 7(1), 143–149 (1979)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of Applied Mathematics and StatisticsThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations