Tauberian Conditions for Almost Convergence in a Geodesic Metric Space


In the present paper, after recalling the Karcher mean in Hadamard spaces, we study the relation between convergence, almost convergence and mean convergence (respect to the defined mean) of a sequence in Hadamard spaces. These results extend Tauberian conditions from Banach spaces to Hadamard spaces. Also, we show that every almost periodic sequence in Hadamard spaces is almost convergent.

This is a preview of subscription content, log in to check access.


  1. 1.

    Ahmadi Kakavandi, B.: Weak topologies in complete \(CAT(0)\) metric spaces. Proc. Am. Math. Soc. 141(3), 1029–1039 (2013)

  2. 2.

    Ahmadi Kakavandi, B., Amini, M.: Duality and subdifferential for convex functions on complete \({\rm CAT}(0)\) metric spaces. Nonlinear Anal. 73(10), 3450–3455 (2010)

  3. 3.

    Amir, D.: Characterizations of Inner Product Spaces. Operator Theory: Advances and Applications. Birkhäuser, Basel (2013)

  4. 4.

    Bacak, M.: Convex Analysis and Optimization in Hadamard Spaces. De Gruyter Series in Nonlinear Analysis and Applications. De Gruyter, Berlin (2014)

  5. 5.

    Berg, I.D., Nikolaev, I.G.: Quasilinearization and curvature of Aleksandrov spaces. Geom. Dedicata 133, 195–218 (2008)

  6. 6.

    Bohr, H.A., Cohn, H.: Almost Periodic Functions. AMS Chelsea Publishing Series. Chelsea Publishing Company, Hartford (1947)

  7. 7.

    Bridson, M.R., Hafliger, A.: Metric Spaces of Nonpositive Curvature. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2011)

  8. 8.

    Butzer, P.L., Nessel, R.J.: Aspects of de La Vallée-Poussin’s work in approximation and its influence. Arch. Hist. Exact Sci. 46(1), 67–95 (1993)

  9. 9.

    Chaoha, P., Phon-on, A.: A note on fixed point sets in CAT(0) spaces. J. Math. Anal. Appl. 320(2), 983–987 (2006)

  10. 10.

    Dehghan, H., Rooin, J.: A characterization of metric projection in CAT(0) spaces (2012). arXiv:1311.4174

  11. 11.

    Dhompongsa, S., Panyanak, B.: On \(\Delta \)-convergence theorems in \({\rm CAT}(0)\) spaces. Comput. Math. Appl. 56(10), 2572–2579 (2008)

  12. 12.

    Espínola, R., Fernández-León, A.: \({\rm CAT}(k)\)-spaces, weak convergence and fixed points. J. Math. Anal. Appl. 353(1), 410–427 (2009)

  13. 13.

    Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)

  14. 14.

    Khatibzadeh, H., Pouladi, H.: Almost periodicity and ergodic theorems for nonexpansive mappings and semigroups in Hadamard spaces (2019). arXiv:1903.00629

  15. 15.

    Kirk, W.A.: Geodesic geometry and fixed point theory II . In: Proceedings of the International Conference in Fixed Point Theory and Applications, pp. 113–142. Valencia, Spain (2003)

  16. 16.

    Kirk, W.A., Panyanak, B.: A concept of convergence in geodesic spaces. Nonlinear Anal. 68(12), 3689–3696 (2008)

  17. 17.

    Kuo, M.K.: Tauberian conditions for almost convergence. Positivity 13(4), 611–619 (2009)

  18. 18.

    Lim, T.C.: Remarks on some fixed point theorems. Proc. Am. Math. Soc. 60, 179–182 (1976)

  19. 19.

    Lorentz, G.G.: A contribution to the theory of divergent sequences. Acta Math. 80, 167–190 (1948)

  20. 20.

    Papadopoulos, A.: Metric Spaces, Convexity and Nonpositive Curvature. IRMA Lectures in Mathematics and Theoretical Physics. European Mathematical Society, Zurich (2005)

Download references


The authors are grateful to the referees for their careful reading and valuable comments and suggestions.

Author information

Correspondence to Hadi Khatibzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khatibzadeh, H., Pouladi, H. Tauberian Conditions for Almost Convergence in a Geodesic Metric Space. Results Math 75, 43 (2020).

Download citation


  • Taubrerian conditions
  • geodesic metric space
  • mean
  • almost convergence
  • almost periodicity

Mathematics Subject Classification

  • 40A05
  • 40A30