Advertisement

Results in Mathematics

, 75:42 | Cite as

Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions

  • A. Martínez-Finkelshtein
  • L. L. Silva RibeiroEmail author
  • A. Sri Ranga
  • M. Tyaglov
Article
  • 5 Downloads

Abstract

In a recent paper (Martínez-Finkelshtein et al. in Proc Am Math Soc 147:2625–2640, 2019) some interesting results were obtained concerning complementary Romanovski–Routh polynomials, a class of orthogonal polynomials on the unit circle and extended regular Coulomb wave functions. The class of orthogonal polynomials here are generalization of the class of circular Jacobi polynomials. In the present paper, in addition to looking at some further properties of the complementary Romanovski–Routh polynomials and associated orthogonal polynomials on the unit circle, behaviour of the zeros of these extended Coulomb wave functions are also studied.

Keywords

Romanovski–Routh polynomials second order differential equations orthogonal polynomials on the unit circle para-orthogonal polynomials 

Mathematics Subject Classification

42C05 33C47 

Notes

Acknowledgements

The colaboration of A. Martínez-Finkelshtein was partially supported by the Spanish government together with the European Regional Development Fund (ERDF) under Grant MTM2017-89941-P (from MINECO), by Junta de Andalucía (the research group FQM-229), and by Campus de Excelencia Internacional del Mar (CEIMAR) of the University of Almería. The author L.L. Silva Ribeiro was supported by the Grant 2017/04358-8 from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) of Brazil. The work of A. Sri Ranga was supported by the Grants 2016/09906-0 of Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and 304087/2018-1 of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) of Brazil. The author M. Tyaglov was partially supported by The Program for Professor of Special Appointment (Oriental Scholar) at Shanghai Institutions of Higher Learning, by the Joint NSFC-ISF Research Program, jointly funded by the National Natural Science Foundation of China and the Israel Science Foundation (No.11561141001), and by National Natural Science Foundation of China under Grant No. 11871336.

References

  1. 1.
    Abromowitz, M., Stegun, I.A. (eds): Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series—55, tenth printing (1972)Google Scholar
  2. 2.
    Andrews, G.E., Askey, R., Roy, R.: Special functions. In: Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M. (eds.) Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2000)Google Scholar
  3. 3.
    Bracciali, C.F., Sri Ranga, A., Swaminathan, A.: Para-orthogonal polynomials on the unit circle satisfying three term recurrence formulas. Appl. Numer. Math. 109, 19–40 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baricz, Á.: Turán type inequalities for regular Coulomb wave functions. J. Math. Anal. Appl. 430, 166–180 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baricz, Á., Štampach, F.: The Hurwitz-type theorem for the regular Coulomb wave function via Hankel determinants. Linear Algebra Appl. 548, 259–272 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bracciali, C.F., Martínez-Finkelshtein, A., Sri Ranga, A., Veronese, D.O.: Christoffel formula for kernel polynomials on the unit circle. J. Approx. Theory 235, 46–73 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chihara, T.S.: An Introduction to Orthogonal Polynomials: Gordon and Breach, Mathematics and its Applications Series (1978)Google Scholar
  8. 8.
    Deaño, A., Segura, J., Temme, N.: Computational properties of three-term recurrence relations for Kummer functions. J. Comput. Appl. Math. 233, 1505–1510 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dzieciol, A., Yngve, S., Fröman, P.O.: Coulomb wave functions with complex values of the variable and the parameters. J. Math. Phys. 40, 6145–6166 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fröberg, C.E.: Numerical treatment of Coulomb wave functions. Rev. Mod. Phys. 27, 399–411 (1955)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM Rev. 9, 24–82 (1967)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Humblet, J.: Analytical structure and properties of Coulomb wave functions for real and complex energies. Ann. Phys. 155, 461–493 (1984)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ikebe, Y.: The zeros of regular Coulomb wave functions and of their derivatives. Math. Comp. 29, 878–887 (1975)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ismail, M.E.H.: Classical and quantum orthogonal polynomials in one variable. In: Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M. (eds.) Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2005)Google Scholar
  15. 15.
    Ismail, M.E.H., Masson, D.R.: Generalized orthogonality and continued fractions. J. Approx. Theory 83, 1–40 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ismail, M.E.H., Sri Ranga, A.: \(R_{II}\) type recurrence, generalized eigenvalue problem and orthogonal polynomials on the unit circle. Linear Algebra Appl. 562, 63–90 (2019)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Martínez-Finkelshtein, A., Silva Ribeiro, L.L., Sri Ranga, A., Tyaglov, M.: Complementary Romanovski–Routh polynomials: from orthogonal polynomials on the unit circle to Coulomb wave functions. Proc. Am. Math. Soc. 147, 2625–2640 (2019)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Meligy, A.S.: Simple expansion for the regular Coulomb wave function. Nuclear Phys. 6, 440–442 (1958)CrossRefGoogle Scholar
  19. 19.
    Michel, N.: Precise Coulomb wave functions for a wide range of complex \(\ell \), \(\eta \) and \(z\). Comput. Phys. Commun. 176, 232–249 (2007)CrossRefGoogle Scholar
  20. 20.
    Miyazaki, Y., Kikuchi, Y., Cai, D., Ikebe, Y.: Error analysis for the computation of zeros of regular Coulomb wave function and its first derivative. Math. Comp. 70, 1195–1204 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Neuman, E.: On Hahn polynomials and continuous dual Hahn polynomials. J. Comput. Anal. Appl. 8, 229–248 (2006)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics: A Unified Introduction with Applications. Birkhäuser Verlag, Basel, Translated from Russian by R.P. Boas (1988)Google Scholar
  23. 23.
    Powel, J.L.: Recurrence formulas for Coulomb wave functions. Phys. Rev. 72, 626–627 (1947)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rainville, E.D.: Special Functions. MacMillan, New York (1960)zbMATHGoogle Scholar
  25. 25.
    Raposo, A.P., Weber, H.J., Alvarez-Castillo, D.E., Kirchbach, M.: Romanovski polynomials in selected physics problems. Cent. Eur. J. Phys. 5, 253–284 (2007)Google Scholar
  26. 26.
    Romanovski, V.: Sur quelques classes nouvelles de polynomes orthogonaux. C. R. Acad. Sci. Paris 188, 1023–1025 (1929)zbMATHGoogle Scholar
  27. 27.
    Routh, E.J.: On some properties of certain solutions of a differential equation of the second order. Proc. Lond. Math. Soc. 16, 245–261 (1884)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory, Amer. Math. Soc. Colloq. Publ., vol. 54, part 1, Amer. Math. Soc., Providence, RI (2005)Google Scholar
  29. 29.
    Štampach, F., Šťovíček, P.: Orthogonal polynomials associated with Coulomb wave functions. J. Math. Anal. Appl. 419, 231–254 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sri Ranga, A.: Szegő polynomials from hypergeometric functions. Proc. Am. Math. Soc. 138, 4243–4247 (2010)CrossRefGoogle Scholar
  31. 31.
    Slater, L.J.: Confluent Hypergeometric Functions. Cambridge University Press, Cambridge (1960)zbMATHGoogle Scholar
  32. 32.
    Shepanski, J.R., Butler, S.T.: An expansion for Coulomb wave functions. Nuclear Phys. 1, 313–321 (1956)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Szegö, G.:, Orthogonal Polynomials. 4th ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, RI (1975)Google Scholar
  34. 34.
    Thompson, I.J., Barnett, A.R.: Coulomb and Bessel functions of complex arguments and order. J. Comput. Phys. 64, 490–509 (1986)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Weber, H.J.: Connection between Romanovski polynomials and other polynomials. Centr. Eur. J. Math. 5, 581–595 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departament of MathematicsBaylor UniversityWacoUSA
  2. 2.Departamento de Matemática Aplicada, IBILCEUNESP-Universidade Estadual PaulistaSPBrazil
  3. 3.School of Mathematical SciencesShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations