Classification and Construction of Minimal Translation Surfaces in Euclidean Space
- 26 Downloads
Abstract
A translation surface of Euclidean space \({\mathbb {R}}^3\) is the sum of two regular curves \(\alpha \) and \(\beta \), called the generating curves. In this paper we classify the minimal translation surfaces of \({\mathbb {R}}^3\) and we give a method of construction of explicit examples. Besides the plane and the minimal surfaces of Scherk type, it is proved that up to reparameterizations of the generating curves, any minimal translation surface is described as \(\Psi (s,t)=\alpha (s)+\alpha (t)\), where \(\alpha \) is a curve parameterized by arc length s, its curvature \(\kappa \) is a positive solution of the autonomous ODE \((y')^2+y^4+c_3y^2+c_1^2y^{-2}+c_1c_2=0\) and its torsion is \(\tau (s)=c_1/\kappa (s)^2\). Here \(c_1\not =0\), \(c_2\) and \(c_3\) are constants such that the cubic equation \(-\lambda ^3+c_2\lambda ^2-c_3\lambda +c_1=0\) has three real roots \(\lambda _1\), \(\lambda _2\) and \(\lambda _3\).
Keywords
Translation surface minimal surface darboux surfaceMathematics Subject Classification
Primary 53A10 Secondary 53C42Notes
References
- 1.Darboux, G.: Leçons sur la Théorie Générale des Surfaces et ses Applications Géométriques du Calcul Infinitésimal, vol. 1–4. Chelsea Publ. Co, reprint (1972)Google Scholar
- 2.Dillen, F., Van de Woestyne, I., Verstraelen, L., Walrave, J.T.: The surface of Scherck in \(E^3\): a special case in the class of minimal surfaces defined as the sum of two curves. Bull. Inst. Math. Acad. Sin. 26, 257–267 (1998)zbMATHGoogle Scholar
- 3.Hasanis, T., López, R.: Translation surfaces in Euclidean space with constant Gaussian curvature. Commun. Anal. Geom. to appearGoogle Scholar
- 4.Liu, H.: Translation surfaces with constant mean curvature in 3-dimensional spaces. J. Geom. 64, 141–149 (1999)MathSciNetCrossRefGoogle Scholar
- 5.López, R.: Minimal translation surfaces in hyperbolic space. Beitr. Algebra Geom. 52, 105–112 (2011)MathSciNetCrossRefGoogle Scholar
- 6.López, R., Munteanu, M.I.: Surfaces with constant mean curvature in Sol geometry. Differ. Geom. Appl. 29(suppl. 1), S238–S245 (2011)MathSciNetCrossRefGoogle Scholar
- 7.López, R., Perdomo, O.: Minimal translation surfaces in Euclidean space. J. Geom. Anal. 27, 2926–2937 (2017)MathSciNetCrossRefGoogle Scholar
- 8.Montiel, S., Ros, A.: Curves and Surfaces. Graduate Studies in Mathematics, vol. 69. American Mathematical Society, Providence (2009)zbMATHGoogle Scholar
- 9.Moruz, M., Munteanu, M.I.: Minimal translation hypersurfaces in \(E^4\). J. Math. Anal. Appl. 439, 798–812 (2016)MathSciNetCrossRefGoogle Scholar
- 10.Munteanu, M.I., Palmas, O., Ruiz-Hernández, G.: Minimal translation hypersurfaces in Euclidean space. Mediterr. J. Math. 13, 2659–2676 (2016)MathSciNetCrossRefGoogle Scholar
- 11.Nitsche, J.C.C.: Lectures on Minimal Surfaces. Cambridge University Press, Cambridge (1989)zbMATHGoogle Scholar
- 12.Scherk, H.F.: Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen. J. Reine Angew. Math. 13, 185–208 (1835)MathSciNetGoogle Scholar