Classification and Construction of Minimal Translation Surfaces in Euclidean Space

  • Thomas Hasanis
  • Rafael LópezEmail author


A translation surface of Euclidean space \({\mathbb {R}}^3\) is the sum of two regular curves \(\alpha \) and \(\beta \), called the generating curves. In this paper we classify the minimal translation surfaces of \({\mathbb {R}}^3\) and we give a method of construction of explicit examples. Besides the plane and the minimal surfaces of Scherk type, it is proved that up to reparameterizations of the generating curves, any minimal translation surface is described as \(\Psi (s,t)=\alpha (s)+\alpha (t)\), where \(\alpha \) is a curve parameterized by arc length s, its curvature \(\kappa \) is a positive solution of the autonomous ODE \((y')^2+y^4+c_3y^2+c_1^2y^{-2}+c_1c_2=0\) and its torsion is \(\tau (s)=c_1/\kappa (s)^2\). Here \(c_1\not =0\), \(c_2\) and \(c_3\) are constants such that the cubic equation \(-\lambda ^3+c_2\lambda ^2-c_3\lambda +c_1=0\) has three real roots \(\lambda _1\), \(\lambda _2\) and \(\lambda _3\).


Translation surface minimal surface darboux surface 

Mathematics Subject Classification

Primary 53A10 Secondary 53C42 



  1. 1.
    Darboux, G.: Leçons sur la Théorie Générale des Surfaces et ses Applications Géométriques du Calcul Infinitésimal, vol. 1–4. Chelsea Publ. Co, reprint (1972)Google Scholar
  2. 2.
    Dillen, F., Van de Woestyne, I., Verstraelen, L., Walrave, J.T.: The surface of Scherck in \(E^3\): a special case in the class of minimal surfaces defined as the sum of two curves. Bull. Inst. Math. Acad. Sin. 26, 257–267 (1998)zbMATHGoogle Scholar
  3. 3.
    Hasanis, T., López, R.: Translation surfaces in Euclidean space with constant Gaussian curvature. Commun. Anal. Geom. to appearGoogle Scholar
  4. 4.
    Liu, H.: Translation surfaces with constant mean curvature in 3-dimensional spaces. J. Geom. 64, 141–149 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    López, R.: Minimal translation surfaces in hyperbolic space. Beitr. Algebra Geom. 52, 105–112 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    López, R., Munteanu, M.I.: Surfaces with constant mean curvature in Sol geometry. Differ. Geom. Appl. 29(suppl. 1), S238–S245 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    López, R., Perdomo, O.: Minimal translation surfaces in Euclidean space. J. Geom. Anal. 27, 2926–2937 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Montiel, S., Ros, A.: Curves and Surfaces. Graduate Studies in Mathematics, vol. 69. American Mathematical Society, Providence (2009)zbMATHGoogle Scholar
  9. 9.
    Moruz, M., Munteanu, M.I.: Minimal translation hypersurfaces in \(E^4\). J. Math. Anal. Appl. 439, 798–812 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Munteanu, M.I., Palmas, O., Ruiz-Hernández, G.: Minimal translation hypersurfaces in Euclidean space. Mediterr. J. Math. 13, 2659–2676 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Nitsche, J.C.C.: Lectures on Minimal Surfaces. Cambridge University Press, Cambridge (1989)zbMATHGoogle Scholar
  12. 12.
    Scherk, H.F.: Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen. J. Reine Angew. Math. 13, 185–208 (1835)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IoanninaIoanninaGreece
  2. 2.Departamento de Geometría y Topología, Instituto de Matemáticas (IEMath-GR)Universidad de GranadaGranadaSpain

Personalised recommendations