Advertisement

Results in Mathematics

, 74:151 | Cite as

Best Constant for Hyers–Ulam Stability of Second-Order h-Difference Equations with Constant Coefficients

  • Douglas R. AndersonEmail author
  • Masakazu Onitsuka
Article
  • 74 Downloads

Abstract

First, we prove that the best (minimum) constant for Hyers–Ulam stability of first-order linear h-difference equations with a complex constant coefficient is the reciprocal of the absolute value of the Hilger real part of that coefficient; if the coefficient lies on the Hilger imaginary circle, then the equation is unstable in the Hyers–Ulam sense. Second, using this best constant from the first-order complex coefficient case, we determine the best constant for Hyers–Ulam stability of second-order linear h-difference equations with constant real coefficients. The second-order equation also is Hyers–Ulam stable if and only if the values of the characteristic equation do not intersect the Hilger imaginary circle.

Keywords

Stability first-order second-order Hyers–Ulam difference equations variation of constants constant coefficients Hilger imaginary circle Hilger real part 

Mathematics Subject Classification

39A10 34A30 34N05 39A30 

Notes

Acknowledgements

The second author was supported by JSPS KAKENHI Grant Number JP17K14226.

References

  1. 1.
    Ulam, S.M.: A Collection of the Mathematical Problems. Interscience, New York (1960)zbMATHGoogle Scholar
  2. 2.
    Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Rassias, ThM: On the stability of linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brillouët–Belluot, N., Brzdęk, J., Ciepliński, K.: On some recent developments in Ulams’s type stability. Abstr. Appl. Anal. 2012, Article ID 716936, 41p (2012)Google Scholar
  5. 5.
    Brzdęk, J., Popa, D., Raşa, I., Xu, B.: Ulam Stability of Operators. A volume in Mathematical Analysis and Its Applications. Academic Press, New York (2018)CrossRefGoogle Scholar
  6. 6.
    Popa, D.: Hyers-Ulam stability of the linear recurrence with constant coefficients. Adv. Differ. Equ. 2005, 407076 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Popa, D.: Hyers–Ulam-Rassias stability of a linear recurrence. J. Math. Anal. Appl. 309, 591–597 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    András, S., Mészáros, A.R.: Ulam–Hyers stability of dynamic equations on time scales via Picard operators. Appl. Math. Comput. 219, 4853–4864 (2013)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Xu, B., Brzdęk, J.: Hyers–Ulam stability of a system of first order linear recurrences with constant coefficients. Discrete Dyn. Nat. Soc. 2015, Article ID 269356, 5p (2015)Google Scholar
  10. 10.
    Brzdęk, J., Wójcik, P.: On approximate solutions of some difference equations. Bull. Australian Math. Soc. 95:3, 76–481 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hua, L., Li, Y., Feng, J.: On Hyers-Ulam stability of dynamic integral equation on time scales. Math. Aeterna. 4(6), 559–571 (2014)Google Scholar
  12. 12.
    Jung, S.-M., Nam, Y.W.: Hyers–Ulam stability of Pielou logistic difference equation. J. Nonlinear Sci. Appl. 10, 3115–3122 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jung, S.-M., Nam, Y.W.: Hyers–Ulam stability of the first order inhomogeneous matrix difference equation. J. Comput. Anal. Appl. 23(8), 1368–1383 (2017)MathSciNetGoogle Scholar
  14. 14.
    Nam, Y.W.: Hyers–Ulam stability of hyperbolic Möbius difference equation, 30p (2017). arXiv:1708.08662v1
  15. 15.
    Nam, Y.W.: Hyers–Ulam stability of elliptic Möbius difference equation. Cogent Math. Stat. 5(1), 1–9 (2018)CrossRefGoogle Scholar
  16. 16.
    Nam, Y.W.: Hyers–Ulam stability of loxodromic Möbius difference equation, 34p (2018). arXiv:1808.09813
  17. 17.
    Shen, Y.H.: The Ulam stability of first order linear dynamic equations on time scales. Results Math. 72(4), 1881–1895 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rasouli, H., Abbaszadeh, S., Eshaghi, M.: Approximately linear recurrences. J. Appl. Anal. 24(1), 81–85 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Anderson, D.R., Onitsuka, M.: Hyers–Ulam stability of first-order homogeneous linear dynamic equations on time scales. Demonstr. Math. 51, 198–210 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Anderson, D.R., Onitsuka, M.: Hyers–Ulam stability for a discrete time scale with two step sizes. Appl. Math. Comput. 344–345, 128–140 (2019)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Baias, A.R., Popa, D.: On Ulam stability of a linear difference equation in Banach spaces. Bull. Malays. Math. Sci. Soc. (2019).  https://doi.org/10.1007/s40840-019-00744-6
  22. 22.
    Buşe, C., O’Regan, D., Saierli, O.: Hyers–Ulam stability for linear differences with time dependent and periodic coefficients. Symmetry 11, 512 (2019).  https://doi.org/10.3390/sym11040512 CrossRefzbMATHGoogle Scholar
  23. 23.
    Onitsuka, M.: Influence of the step size on Hyers-Ulam stability of first-order homogeneous linear difference equations. Int. J. Differ. Equ. 12(2), 281–302 (2017)MathSciNetGoogle Scholar
  24. 24.
    Hilger, S.: Special functions, Laplace and Fourier transform on measure chains. Dyn. Syst. Appl. 8(3–4), 471–488 (1999)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Bohner, M., Peterson, A.: Dynamic equations on time scales. An introduction with applications. Birkhäuser, Boston (2001)CrossRefGoogle Scholar
  26. 26.
    Onitsuka, M.: Hyers–Ulam stability of second-order nonhomogeneous linear difference equations with a constant step size. J. Comput. Anal. Appl. 28(1), 152–165 (2020)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsConcordia CollegeMoorheadUSA
  2. 2.Department of Applied MathematicsOkayama University of ScienceOkayamaJapan

Personalised recommendations