Advertisement

Results in Mathematics

, 74:149 | Cite as

Revisiting Bianchini and Grandolfi Theorem in the Context of Modified \(\omega \)-Distances

  • Carmen Alegre Gil
  • Erdal KarapınarEmail author
  • Josefa Marín Molina
  • Pedro Tirado Peláez
Article
  • 82 Downloads

Abstract

In this paper, we establish a proof for Bianchini and Grandolfi Theorem in the context of quasi-metric spaces via modified \(\omega \)-distances. As consequences of our main results, we derive several existing fixed point theorems in the literature. Various examples are presented to illustrate our obtained results.

Keywords

\(\omega \)-Distance modified-\(\omega \)-distance quasi-metric space Bianchini and Grandolfi function (C)-comparison function fixed point 

Mathematics Subject Classification

47H10 54H25 

Notes

References

  1. 1.
    Alegre, C., Marín, J., Romaguera, S.: A fixed point theorem for generalized contractions involving w-distances on complete quasi-metric spaces. Fixed Point Theory Appl. 2014, 40 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alegre, C., Marín, J.: Modified w-distances on quasi-metric spaces and a fixed point theorem on complete quasi-metric spaces. Topol. Appl. 203, 32–41 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Al-Homidan, S., Ansari, Q.H., Yao, J.C.: Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory. Nonlinear Anal. Theory Methods Appl. 69, 126–139 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alsulami, H., Gulyaz, S., Karapinar, E., Erhan, I.M.: Fixed point theorems for a class of \(\alpha \)-admissible contractions and applications to boundary value problem. Abstr. Appl. Anal. Article ID 187031 (2014)Google Scholar
  5. 5.
    Bianchini, R.M., Grandolfi, M.: Trasformazioni di tipo contrattivo generalizatto in uno spacio metrico. Atti della Accademia Nazionale dei Lincei 45, 212–216 (1969)zbMATHGoogle Scholar
  6. 6.
    Cobzas, S.: Functional Analysis in Asymmetric Normed Spaces. Birkhauser, Basel (2013)CrossRefGoogle Scholar
  7. 7.
    Kada, O., Suzuki, T., Takahashi, W.: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44, 381–391 (1996)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Karapınar, E., Romaguera, S., Tirado, P.: Contractive multivalued maps in terms of \(Q\)-functions on complete quasimetric spaces. Fixed Point Theory Appl. 2014, 53 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Karapinar, E., Samet, B.: Generalized \((\alpha -\psi )\) contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. Article ID 793486 (2012)Google Scholar
  10. 10.
    Künzi, H.P.A.: Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology. In: Aull, C.E., Lowen, R. (eds.) Handbook of the History of General Topology, vol. 3, pp. 853–968. Kluwer, Dordrecht (2001)CrossRefGoogle Scholar
  11. 11.
    Marín, J., Romaguera, S., Tirado, P.: Generalized contractive set-valued maps on complete preordered quasi-metric spaces. J. Funct. Spaces Appl. Article ID 269246, p. 6 (2013)Google Scholar
  12. 12.
    Marín, J., Romaguera, S., Tirado, P.: Q-functons on quasimetric spaces and fixed points for multivalued maps. Fixed Point Theory Appl. Article ID 603861 (2011)Google Scholar
  13. 13.
    Marín, J., Romaguera, S., Tirado, P.: Weakly contractive multivalued maps and w-distances on complete quasi-metric spaces. Fixed Point Theory Appl. 1, 1–9 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Park, S.: On generalizations of the Ekeland-type variational principles. Nonlinear Anal. Theory Methods Appl. 39, 881–889 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Proinov, P.D.: A generalization of the Banach contraction principle with high order of convergence of successive approximations nonlinear analysis. Theory Methods Appl. 67, 2361–2369 (2007)CrossRefGoogle Scholar
  16. 16.
    Rus, I.A.: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca (2001)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto Universitario de Matemática Pura y AplicadaUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Department of Medical Research, China Medical University HospitalChina Medical UniversityTaichongTaiwan

Personalised recommendations