A New Approach to the Generalization of Darbo’s Fixed Point Problem by Using Simulation Functions with Application to Integral Equations

  • Mehdi Asadi
  • Moosa GabelehEmail author
  • Calogero Vetro


We investigate the existence of fixed points of self-mappings via simulation functions and measure of noncompactness. We use different classes of additional functions to get some general contractive inequalities. As an application of our main conclusions, we survey the existence of a solution for a class of integral equations under some new conditions. An example will be given to support our results.


Fixed point measure of noncompactness simulation function integral equation 

Mathematics Subject Classification

Primary 47H08 Secondary 54H25 



The authors wish to thank the expert referee for his/her corrections and remarks.


  1. 1.
    Aleksić, S., Kadelburg, Z., Mitrović, Z.D., Radenović, S.: A new survey: cone metric spaces. J. Int. Math. Virtual Inst. 9, 93–121 (2019)MathSciNetGoogle Scholar
  2. 2.
    Alghamdi, M.A., Shahzad, N., Vetro, F.: Best proximity points for some classes of proximal contractions. In: Abstract and Applied Analysis, vol. 2013(713252), pp. 1–10 (2013). MathSciNetGoogle Scholar
  3. 3.
    Altun, I., Turkoglu, D.: A fixed point theorem for mappings satisfying a general contractive condition of operator type. J. Comput. Anal. Appl. 9, 9–14 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Argoubi, H., Samet, B., Vetro, C.: Nonlinear contractions involving simulation functions in a metric space with a partial order. J. Nonlinear Sci. Appl. 8, 1082–1094 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ayerbe Toledano, J.M., Dominguez Benavides, T., López-Acedo, G.: Measures of Noncompactness in Metric Fixed Point Theory. Operator Theory: Advances and Applications, vol. 99. Birkhäuser, Basel (1997). CrossRefGoogle Scholar
  6. 6.
    Chanda, A., Dey, L.K., Radenović, S.: Simulation functions: a Survey of recent results. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM (2018). CrossRefGoogle Scholar
  7. 7.
    Chandok, S., Chanda, A., Dey, L.K., Pavlović, M., Radenović, S.: Simulations functions and Geraghty type results. Bol. Soc. Parana. Mat. (3), to appear (2019)Google Scholar
  8. 8.
    Darbo, G.: Punti uniti in trasformazioni a codominio non compatto. Rend. Semin. Mat. Univ. Padova 24, 84–92 (1955)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Deng, G., Huang, H., Cvetković, M., Radenović, S.: Cone valued measure of noncompactness and related fixed point theorems. Bull. Int. Math. Virtual Inst. 8, 233–243 (2018)MathSciNetGoogle Scholar
  10. 10.
    Gabeleh, M., Markin, J.: Optimum solutions for a system of differential equations via measure of noncompactness. Indag. Math. (N.S.) 29, 895–906 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gabeleh, M., Vetro, C.: A new extension of Darbo’s fixed point theorem using relatively Meir–Keeler condensing operators. Bull. Aust. Math. Soc. 98, 286–297 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gohberg, I., Goldenštein, L.S., Markus, A.S.: Investigation of some properties of bounded linear operators in connection with their q-norms. Učen. Zap. Kishinevsk. Un-ta 29, 29–36 (1957)Google Scholar
  13. 13.
    Geraghty, M.: On contractive mappings. Proc. Am. Math. Soc. 40, 604–608 (1973)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hussain, A., Kanwal, T., Mitrović, Z.D., Radenović, S.: Optimal solutions and applications to nonlinear matrix and integral equations via simulation function. Filomat 32, 6087–6106 (2018)MathSciNetGoogle Scholar
  15. 15.
    Khojasteh, F., Shukla, S., Radenović, S.: A new approach to the study of fixed point theorems via simulation functions. Filomat 29, 1189–1194 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kostić, A., Rakočević, V., Radenović, S.: Best proximity points involving simulation functions with \(w_0\)-distance. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM (2018). CrossRefGoogle Scholar
  17. 17.
    Liu, X.-L., Ansari, A.H., Chandok, S., Radenović, S.: On some results in metric spaces using auxiliary simulation functions via new functions. J. Comput. Anal. Appl. 24, 1103–1114 (2018)MathSciNetGoogle Scholar
  18. 18.
    Mizoguchi, N., Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141, 177–188 (1989)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Radenović, S., Chandok, S.: Simulation type functions and coincidence point results. Filomat 32, 141–147 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Radenović, S., Vetro, F., Vujaković, J.: An alternative and easy approach to fixed point results via simulation functions. Demonstr. Math. 50, 223–230 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Soleimani Rad, G., Radenović, S., Dolićanin-Dekić, D.: A shorter and simple approach to study fixed point results via b-simulation functions. Iran. J. Math. Sci. Inform. 13, 97–102 (2018)Google Scholar
  22. 22.
    Vetro, C., Vetro, F.: On the existence of at least a solution for functional integral equations via measure of noncompactness. Banach J. Math. Anal. 11, 497–512 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Vetro, C., Vetro, F.: The class of F-contraction mappings with a measure of noncompactness. In: Banaś, J., Jleli, M., Mursaleen, M., Samet, B., Vetro, C. (eds.) Advances in Nonlinear Analysis via the Concept of Measure of Noncompactness, pp. 297–331, Springer, Singapore (2017). zbMATHGoogle Scholar
  24. 24.
    Vetro, F.: Fixed point results for ordered S–G-contractions in ordered metric spaces. Nonlinear Anal. Model. Control 23, 269–283 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsZanjan Branch Islamic Azad UniversityZanjanIran
  2. 2.Department of MathematicsAyatollah Boroujerdi UniversityBorujerdIran
  3. 3.Department of Mathematics and Computer ScienceUniversity of PalermoPalermoItaly

Personalised recommendations