Advertisement

A Voronovskaya-Type Theorem for the First Derivatives of Positive Linear Operators

  • Adrian HolhoşEmail author
Article
  • 9 Downloads

Abstract

In this paper we obtain a Voronovskaya formula for derivatives of positive linear operators from a general class of exponential-type operators.

Keywords

Voronovskaya formula positive linear operators Szász–Mirakyan operators Bernstein–Stancu operators Baskakov operators 

Mathematics Subject Classification

41A36 41A60 41A25 

Notes

References

  1. 1.
    Bardaro, C., Butzer, P.L., Stens, R.L., Vinti, G.: Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals. Analysis (Munich) 23(4), 299–340 (2003)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Wafi, A., Khatoon, S.: Convergence and Voronovskaja-type theorems for derivatives of generalized Baskakov operators. Cent. Eur. J. Math. 6, 325–334 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Butzer, P.L., Karsli, H.: Voronovskaya-type theorems for derivatives of the Bernstein–Chlodovsky polynomials and the Szász–Mirakyan operator. Comment. Math. 49, 33–57 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Karsli, H.: A Voronovskaya-type theorem for the second derivative of the Bernstein–Chlodovsky polynomials. Proc. Est. Acad. Sci. 61(1), 9–19 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    May, C.P.: Saturation and inverse theorems for combinations of a class of exponential-type operators. Can. J. Math 28, 1224–1250 (1976)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ismail, M.E.H., May, C.P.: On a family of approximation operators. J. Math. Anal. Appl. 63, 446–462 (1978)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gavrea, I., Ivan, M.: On a new sequence of positive linear operators related to squared Bernstein polynomials. Positivity 21, 911–917 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Holhoş, A.: Voronovskaya theorem for a sequence of positive linear operators related to squared Bernstein polynomials. Positivity (2018).  https://doi.org/10.1007/s11117-018-0625-y
  9. 9.
    Holhoş, A.: Quantitative estimates of Voronovskaya type in weighted spaces. Results Math. 73, 53 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ispir, N., Atakut, Ç.: Approximation by modified Szász–Mirakjan operators on weighted spaces. Proc. Indian Acad. Sci. Math. Sci. 112(4), 571–578 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hermann, T.: Approximation of unbounded functions on unbounded interval. Acta Math. Hungar. 29(3–4), 393–398 (1977)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Stancu, D.D.: Asupra unei generalizări a polinoamelor lui Bernstein. Stud. Univ. Babeş-Bolyai Math. 14, 31–45 (1969). (in Romanian) Google Scholar
  13. 13.
    Holhoş, A.: Uniform approximation of functions by Bernstein–Stancu operators. Carpathian J. Math. 31, 205–212 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Miclăuş, D., Braica, P.I.: The generalization of some results for Bernstein and Stancu operators. Creat. Math. Inform. 20, 147–156 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Gonska, H., Păltănea, R.: General Voronovskaya and asymptotic theorems in simultaneous approximation. Mediterr. J. Math. 7, 37–49 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Miheşan, V.: Uniform approximation with positive linear operators generated by generalized Baskakov method. Automat. Comput. Appl. Math. 7, 34–37 (1998)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsTechnical University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations