Results in Mathematics

, 74:64 | Cite as

Translating Solitons for the Inverse Mean Curvature Flow

  • Daehwan Kim
  • Juncheol PyoEmail author


In this paper, we investigate translating solitons for the inverse mean curvature flow (IMCF), which is a special solution deformed only for translation under the flow. The IMCF has been studied extensively not only as a type of a natural geometric flow, but also for obtaining various interesting geometric inequalities. We show that the translating solitons that are either ruled surfaces or translation surfaces are cycloid cylinders, and completely classify 2-dimensional helicoidal translating solitons and the higher dimensional rotationally symmetric translating solitons using the phase-plane analysis. The surface foliated by circles, which is called a cyclic surface, is regarded in terms of being the translating soliton for the IMCF, and then it is a surface of revolution whose revolution axis is parallel to the translating direction. In particular, we extend the result to a higher dimension, namely, the n-dimensional translating soliton foliated by spheres lying on parallel hyperplanes in \(\mathbb {R}^{n+1}\) must be a rotationally symmetric hypersurface whose rotation axis is parallel to the translating direction.


Inverse mean curvature flow translating solitons cycloid cylinder helicoidal surface rotationally symmetric hypersurface 

Mathematics Subject Classification

53C44 37C10 53A10 



The authors warmly thank the referees for their careful reading of the paper and their valuable suggestions to improve the paper. The second author was supported in part by the National Research Foundation of Korea (NRF2017R1E1A1A03070495 and NRF-2017R1A5A1015722).


  1. 1.
    Altschuler, S.J., Wu, L.F.: Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle. Calc. Var. Partial Differ. Equ. 2(1), 101–111 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Anciaux, H.: Two non existence results for the self-similar equation in Euclidean 3-space. J. Geom. 96(1–2), 1–10 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bray, H.L., Neves, A.: Classification of prime 3-manifolds with Yamabe invariant greater than \({\mathbb{RP}}^3\). Ann. Math. 159(1), 407–424 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski inequality for hypersurfaces in the anti-de Sitter–Schwarzschild manifold. Commun. Pure Appl. Math. 69(1), 124–144 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Castro, I., Lerma, A.M.: Lagrangian homothetic solitons for the inverse mean curvature flow. Results Math. 71(3–4), 1109–1125 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Clutterbuck, J., Schnürer, O.C., Schulze, F.: Stability of translating solutions to mean curvature flow. Calc. Var. Partial Differ. Equ. 29(3), 281–293 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Daskalopoulos, P., Huisken, G.: Inverse mean curvature flow of entire graphs. arXiv:1709.06665v1
  8. 8.
    Drugan, G., Fong, F.T.-H., Lee, H.: Rotational symmetry of self-expanders to the inverse mean curvature flow with cylindrical ends. Math. Nachr. 290(17–18), 2826–2831 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Drugan, G., Lee, H., Wheeler, G.: Solitons for the inverse mean curvature flow. Pac. J. Math. 284(2), 309–326 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32(1), 299–314 (1990)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guan, P., Li, J.: The quermassintegral inequalities for \(k\)-convex starshaped domains. Adv. Math. 221(5), 1725–1732 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hieu, D.T., Hoang, N.M.: Ruled minimal surfaces in \(\mathbb{R}^3\) with density \(e^z\). Pac. J. Math. 243(2), 277–285 (2009)CrossRefGoogle Scholar
  13. 13.
    Hopf, H.: Differential Geometry in the Large: Seminar Lectures New York University 1946 and Stanford University 1956, vol. 1000. Springer, Berlin (2003)zbMATHGoogle Scholar
  14. 14.
    Huisken, G., Ilmanen, T.: The Riemannian Penrose inequality. Int. Math. Res. Not. 20, 1045–1058 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Huisken, G., Ilmanen, T.: A note on inverse mean curvature flow. In: Proceedings of the Workshop on Nonlinear Partial Differential Equation, Saitama University (1997)Google Scholar
  16. 16.
    Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Huisken, G., Ilmanen, T.: Higher regularity of the inverse mean curvature flow. J. Differ. Geom. 80(3), 433–451 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Huisken, G., Sinestrari, C.: Mean curvature flow singularities for mean convex surfaces. Calc. Var. Partial Differ. Equ. 8(1), 1–14 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jagy, W.C.: Minimal hypersurfaces foliated by spheres. Mich. Math. J. 38(2), 255–270 (1991)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kim, D., Pyo, J.: Translating solitons foliated by spheres. Int. J. Math. 28(1), 1750006 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kim, D., Pyo, J.: Rigidity theorems of minimal surfaces foliated by similar planar curves. Results Math. 72(4), 1697–1716 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kim, D., Pyo, J.: Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete Contin. Dyn. Syst. 38(11), 5897–5919 (2018)CrossRefGoogle Scholar
  23. 23.
    Kim, D., Pyo, J.: \(O(m) \times O(n)\)-Invariant homothetic solitons for inverse mean curvature flow in \({\mathbb{R}}^{m+n}\) preprint (2019)Google Scholar
  24. 24.
    Kim, D., Pyo, J.: Remarks on solitons for inverse mean curvature flow. Preprint (2019)Google Scholar
  25. 25.
    Kwong, K.-K., Miao, P.: A new monotone quantity along the inverse mean curvature flow in \(\mathbb{R}^{n}\). Pac. J. Math. 267(2), 417–422 (2014)CrossRefGoogle Scholar
  26. 26.
    Nitsche, J.C.C.: Cyclic surfaces of constant mean curvature. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1, 1–5 (1989)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Perdomo, O.M.: Helicoidal minimal surfaces in \(\mathbb{R}^3\). Ill. J. Math. 57(1), 87–104 (2013)CrossRefGoogle Scholar
  28. 28.
    Pyo, J.: Foliations of a smooth metric measure space by hypersurfaces with constant \(f\)-mean curvature. Pac. J. Math. 271, 231–242 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pyo, J.: Compact translating solitons with non-empty planar boundary. Differ. Geom. Appl. 47, 79–85 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Rees, E.L.: Graphical discussion of the roots of a quartic equation. Am. Math. Mon. 29(2), 51–55 (1922)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Smoczyk, K.: Remarks on the inverse mean curvature flow. Asian J. Math. 4(2), 331–335 (2000)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Urbas, J.I.E.: On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. 205(3), 355–372 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of MathematicsKorea Institute for Advanced StudySeoulRepublic of Korea
  2. 2.Department of MathematicsPusan National UniversityBusanRepublic of Korea

Personalised recommendations