Results in Mathematics

, 74:61 | Cite as

Composition Operators on de Branges–Rovnyak Spaces

  • Emmanuel FricainEmail author
  • Muath Karaki
  • Javad Mashreghi


We study the compactness of the composition operator on de Branges–Rovnyak spaces. Inspired by a paper by Lyubarskii–Malinnikova on model spaces, we give some necessary and some sufficient conditions for compactness. In the paper of Lyubarskii-Malinnikova, the key point is some Bernstein inequality on model spaces due to Cohn (and based on a deep inequality of Axler–Chang–Sarason involving the Hardy–Littlewood maximal function). We generalize the result of Cohn to some subspace of a de Branges–Rovnyak space (in many cases dense) and then get a sufficient condition (analogue to Lyubarskii–Malinnikova’s condition) for compactness of the composition operator on that subspace.


Compact operator composition operator hardy spaces de Branges–Rovnyak spaces 

Mathematics Subject Classification

Primary: 30D50 Secondary: 47B33 



We would like to thank the anonymous referee for his/her remarks especially concerning the presentation of the paper.


  1. 1.
    Axler, S., Chang, S.-Y.A., Sarason, D.: Products of Toeplitz operators. Integral Equs. Oper. Theory 1(3), 285–309 (1978)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baranov, A., Fricain, E., Mashreghi, J.: Weighted norm inequalities for de Branges–Rovnyak spaces and their applications. Am. J. Math. 132(1), 125–155 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cohn, W.S.: Carleson measures and operators on star-invariant subspaces. J. Oper. Theory 15(1), 181–202 (1986)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  5. 5.
    de Branges, L., Rovnyak, J.: Canonical models in quantum scattering theory. In: Perturbation Theory and Its Applications in Quantum Mechanics (Proc. Adv. Sem. Math. Res. Center, U.S. Army, Theoret. Chem. Inst., Univ. of Wisconsin, Madison, Wis., 1965), pp. 295–392. Wiley, New York (1966)Google Scholar
  6. 6.
    de Branges, L., Rovnyak, J.: Square Summable Power Series. Holt, Rinehart and Winston, New York (1966)zbMATHGoogle Scholar
  7. 7.
    Fricain, E., Mashreghi, J.: The Theory of \({\cal{H}}(b)\) Spaces, volume 1 and 2. New Mathematical Monographs, 20 and 21, Cambridge University Press, Cambridge (2016)Google Scholar
  8. 8.
    Lyubarskii, Y., Malinnikova, E.: Composition operator on model spaces. Recent trends in analysis. Theta Ser. Adv. Math. 16, 149–157 (2013)zbMATHGoogle Scholar
  9. 9.
    Marcinkiewicz, J., Zygmund, A.: A theorem of Lusin. Part I. Duke Math. J. 4(3), 473–485 (1938)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sarason, D.: Sub-Hardy Hilbert Spaces in the Unit Disk. University of Arkansas Lecture Notes in the Mathematical Sciences, 10. Wiley, New York (1994)Google Scholar
  11. 11.
    Sarason, D.: Algebraic properties of truncated toeplitz operators. Oper. Matrices 4, 491–526 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Shapiro, J.H.: The essential norm of a composition operator. Ann. Math. (2) 125(2), 375–404 (1987)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Shapiro, J.H.: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics. Springer, New York (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Emmanuel Fricain
    • 1
    Email author
  • Muath Karaki
    • 2
  • Javad Mashreghi
    • 3
  1. 1.Laboratoire Paul Painlevé, UFR de Mathématiques, Bâtiment M2Université des Sciences et Technologies Lille 1Villeneuve d’Ascq CédexFrance
  2. 2.Department of MathematicsAn–Najah National UniversityNablusPalestine
  3. 3.Départament de Mathematiques et de StatistiqueUniversité LavalQuebecCanada

Personalised recommendations