Functionals Related to Gauss–Pólya Type Inequalities Involving Derivatives
Article
First Online:
Abstract
We consider several functionals associated with inequalities which involve derivatives of functions. As a consequence of those results we get new refinements and improvements for the Gauss–Pólya inequalities.
Keywords
Derivative functional the Gauss–Pólya inequalities Hölder type inequality Minkowski type inequality monotonicity superadditivityMathematics Subject Classification
39B62 26D15 26D10Notes
References
- 1.Beesack, P.R.: Inequalities for absolute moments of a distribution: from Laplace to Von Mises. J. Math. Anal. Appl. 98, 435–457 (1984)MathSciNetCrossRefGoogle Scholar
- 2.Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic Publishers, Dordrecht (1993)CrossRefGoogle Scholar
- 3.Pečarić, J., Varošanec, S.: A generalization of Pólya’s inequalities. In: Agarwal, R.P. (ed.) Inequalities and Applications. WSSIAA 3, pp. 501–504. World Scientific Publishing Company, Singapore (1994)CrossRefGoogle Scholar
- 4.Pólya, G., Szegö, G.: Aufgaben und Lehrsätze aus der Analysis, I, II. Springer, Berlin (1925)zbMATHGoogle Scholar
- 5.Varošanec, S.: Inequalities of Minkowski’s type. Real Anal. Exch. 20(1), 250–255 (1994–1995)Google Scholar
- 6.Varošanec, S., Pečarić, J.: Some integral inequalities with application for bounds for moments of a distribution. J. Aust. Math. Soc. Ser. B Appl. Math. 38, 325–335 (1997)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019