Results in Mathematics

, 74:47

# Bipartite Sets of Spheres and Casey-Type Theorems

• Hiroshi Maehara
• Horst Martini
Article

## Abstract

A bipartite set of spheres in $${\mathbb {R}}^n$$ is a set of colored spheres, where two colors are used, no sphere is contained in the closed ball bounded by another sphere in the set, and spheres of different colors are disjoint. For any two spheres in a bipartite set, the common-tangent distance between them is defined as the distance between two tangent points in a common tangent hyperplane to them, where an external common tangent hyperplane is taken if the two spheres are of the same color; otherwise, a common internal tangent hyperplane is taken. By this common-tangent distance, a bipartite set becomes a semi-metric space. It turns out that bipartite sets of spheres form an interesting family of semi-metric spaces. Casey’s theorem (a generalization of Ptolemy’s theorem) gives a condition for a bipartite set of four circles in $${\mathbb {R}}^2$$ to have a circle that is suitably tangent to all circles in the bipartite set. Ptolemy’s theorem is generalized to the n-dimensional situation via Cayley–Menger determinants. Among other results, we present a Casey-type theorem for a bipartite set of $$n+2$$ spheres in n dimensions as a generalization of the n-dimensional version of Ptolemy’s theorem, and we extend this further to a bipartite set with an arbitrary number of spheres in $${\mathbb {R}}^n$$.

## Keywords

Bipartite sets of spheres Casey’s theorem Cayley–Menger determinant Ptolemy’s theorem semi-metric space

## Mathematics Subject Classification

51M04 51B10 15A15 51M09

## References

1. 1.
Abroshimov, N.V., Aseev, V.V.: Generalizations of Casey’s theorem for higher dimensions. Lobachevskii J. Math. 39, 1–12 (2018)
2. 2.
Abrosimov, N.V., Mikaiylova, L.A.: Casey’s theorem in hyperbolic geometry. Sib. Èlektron. Mat. Izv. 12, 354–360 (2015)
3. 3.
Berger, M.: Geometry I. Springer, Berlin (1987)
4. 4.
Blumenthal, L.: Theory and Applications of Distance Geometry. Clarendon Press, Oxford (1953)
5. 5.
Bottema, O.: Topics in Elementary Geometry, 2nd edn, translated from the 1987 Dutch edition by Reinie Erné. Springer, New York (2008)Google Scholar
6. 6.
Bowers, J.C., Bowers, P.: A Menger redux: embedding metric spaces isometrically in Euclidean spaces. Am. Math. Monthly 124(7), 621–636 (2017)
7. 7.
Casey, J.: On the equations and properties: (1) of the system of circles touching three circles in a plane; (2) of the system of spheres touching four spheres in space; (3) of the system of circles touching three circles on a sphere; (4) of the system of conics inscribed to a conic, and touching three inscribed conics in a plane. Proc. R. Ir. Acad. (1836–1869) 9, 396–423 (1864)Google Scholar
8. 8.
Casey, J.: A Sequel to the First Six Books of the Elements of Euclid Containing an Easy Introduction to the Modern Geometry. With Numerous Examples. University Press, Dublin (1881). JFM 13.0436.02
9. 9.
Coolidge, J.L.: A Treatise on the Geometry of the Circle and the Sphere. Chelsea Publishing Company, New York (1971)
10. 10.
D’Andrea, C., Sombra, M.: The Cayley–Menger determinant is irreducible for $n\ge 3$. Sib. Math. J. 46, 71–76 (2005)
11. 11.
Eves, H.W.: Fundamentals of Geometry. Allyn and Bacon, Boston (1969)
12. 12.
Fukagawa, H., Pedoe, D.: San Gaku-Japanese Temple Geometry Problems. The Charles Babbage Research Center, Winnipeg (1989)Google Scholar
13. 13.
Fukuzo, S., Yoshimasa, M.: On Hōdoji’s “Sanhenh” and Casey’s inversion theorem (Japanese). Sūgakushi Kenkyū 116, 62–77 (1988)
14. 14.
Gregorac, R.J.: Feuerbach’s relation and Ptolemy’s theorem in ${{\mathbb{R}}}^n$. Geom. Dedic. 60(1), 65–88 (1996)
15. 15.
Gueron, S.: Two applications of the generalized Ptolemy theorem. Am. Math. Monthly 109(4), 362–370 (2002)
16. 16.
Hayashi, T.: Un théorème de Casey en mathématiques japonaises. Tôhoku Math. J. 1, 204–206 (1912). JFM 43.0582.06
17. 17.
Johnson, R.A.: Advanced Euclidean Geometry. Dover Publications Inc., New York (2007)Google Scholar
18. 18.
Kostin, A.V., Kostina, N.N.: An interpretation of Casey’s theorem and of its hyperbolic analogue (Russian. English summary). Sib. Èlektron. Mat. Izv. 13 (2916), 242–251Google Scholar
19. 19.
Kubota, T.: On the extended Ptolemy’s theorem in hyperbolic geometry. Sci. Rep. Tôhoku Univ. 1, 131–156 (1912)Google Scholar
20. 20.
Kurnik, Z., Volenec, V.: Die Verallgemeinerungen des Ptolemäischen Satzes und einiger seiner Analoga in der euklidischen und den nichteuklidischen Geometrien (German. Serbo-Croatian summary). Glasnik Mat. Ser. III 2(22), 213–243 (1967)
21. 21.
Kurnik, Z., Volenec, V.: Neue Verallgemeinerungen der Ptolemäischen Relationen in der euklidischen und den nichteuklidischen Geometrien (German. Serbo-Croatian summary). Glasnik Mat. Ser. III 3(23), 77–86 (1968)
22. 22.
Liberti, L., Lavor, C.: Six mathematical gems from the history of distance geometry. Int. Trans. Oper. Res. 23, 899–920 (2016)
23. 23.
Maehara, H., Tokushige, N.: From line-systems to sphere systems—Schläfli’s double six, Lie’s line-sphere transformation, and Grace’s theorem. Eur. J. Combin. 30, 1337–1351 (2009)
24. 24.
Menger, K.: New foundation of Euclidean geometry. Am. J. Math. 53(4), 721–745 (1931)
25. 25.
Mikami, Y.: Casey’s theorem in Japanese mathematics. Tôhoku Math. J. 15, 289–296 (1919). JFM 47.0028.05
26. 26.
Reuschel, A.: Berührungseigenschaften des Feuerbachkreises. Zusammenhang zwischen der Caseyschen Verallgemeinerung des Satzes. Praxis Math. 18(1), 3–10 (1976)
27. 27.
Taylor, J.H.: A Euclidean proof of Casey’s extension of Ptolemy’s theorem. Quart. J. 26, 228–231 (1893)
28. 28.
van Gruting, C.J.: Some remarks on properties of triangles and circles in elliptic geometry, II (Dutch). Simon Stevin 28, 13–39 (1951)
29. 29.
Weisstein, E.W.: CRC Concise Encyclopedia of Mathematics, 2nd edn. Chapman & Hall, Boca Raton (2003)
30. 30.
Zacharias, M.: Der Caseysche Satz. Jber. Deutsch. Math. Verein. 52, 79–89 (1942)

© Springer Nature Switzerland AG 2019

## Authors and Affiliations

• Hiroshi Maehara
• 1
• Horst Martini
• 2
1. 1.Ryukyu UniversityNishiharaJapan
2. 2.Faculty of MathematicsChemnitz University of TechnologyChemnitzGermany