Results in Mathematics

, 74:35 | Cite as

A Representation Formula for Non-conformal Harmonic Surfaces in \(\varvec{R}^{\mathbf{3}}\)

  • Bart Dioos
  • Makoto SakakiEmail author


We discuss non-conformal harmonic surfaces in \(R^3\) with prescribed (±)transforms, and we get a representation formula for non-conformal harmonic surfaces in \(R^3\).


Non-conformal harmonic surface (±)transform representation formula 

Mathematics Subject Classification

Primary 53A10 Secondary 58E20 



  1. 1.
    Alarcon, A., Lopez, F.: On harmonic quasiconformal immersions of surfaces in \(R^3\). Trans. Am. Math. Soc. 365, 1711–1742 (2013)CrossRefGoogle Scholar
  2. 2.
    Antic, M., Vrancken, L.: Sequences of minimal surfaces in \(S^{2n+1}\). Isr. J. Math. 179, 493–508 (2010)CrossRefGoogle Scholar
  3. 3.
    Bolton, J., Vrancken, L.: Transforms for minimal surfaces in the \(5\)-sphere. Differ. Geom. Appl. 27, 34–46 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Connor, P.: Harmonic parametrizations of surfaces of arbitrary genus. Differ. Geom. Dyn. Syst. 19, 15–34 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dioos, B., Van der Veken, J., Vrancken, L.: Sequences of harmonic maps in the \(3\)-sphere. Math. Nachr. 288, 2001–2015 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kalaj, D.: The Gauss map of a harmonic surface. Indag. Math. 24, 415–427 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Klotz Milnor, T.: Mapping surfaces harmonically into \(E^n\). Proc. Am. Math. Soc. 78, 269–275 (1980)zbMATHGoogle Scholar
  8. 8.
    Lawson, H.B.: Complete minimal surfaces in \(S^3\). Ann. Math. 92, 335–374 (1970)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Osserman, R.: A Survey of Minimal Surfaces. Dover, New York (1986)zbMATHGoogle Scholar
  10. 10.
    Sakaki, M.: Transforms for minimal surfaces in \(5\)-dimensional space forms. Publ. Inst. Math. (Beograd) (N.S.) 102(116), 241–246 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sakaki, M.: Transforms for non-conformal harmonic surfaces in \(R^3\). Results Math. 72, 1807–1811 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tutorial Services, Faculty of Engineering ScienceKU LeuvenLouvainBelgium
  2. 2.Graduate School of Science and TechnologyHirosaki UniversityHirosakiJapan

Personalised recommendations