Inequalities and Asymptotic Expansions Related to the Volume of the Unit Ball in \(\pmb {\mathbb {R}}^{{{\varvec{n}}}}\)
Article
First Online:
- 6 Downloads
Abstract
Let \(\Omega _{n}=\pi ^{n/2}/\Gamma (\frac{n}{2}+1) \, (n \in \mathbb {N})\) denote the volume of the unit ball in \(\mathbb {R}^{n}\). In this paper, we present asymptotic expansions and inequalities related to \(\Omega _{n}\) and the quantities:
$$\begin{aligned} \frac{\Omega _{n-1}}{\Omega _{n}}, \quad \frac{\Omega _{n}}{\Omega _{n-1}+\Omega _{n+1}} \quad \text {and}\quad \frac{\Omega _n^{1/n}}{\Omega _{n+1}^{1/(n+1)}}. \end{aligned}$$
Keywords
Volume of the unit n-dimensional ball gamma function asymptotic expansions inequalitiesMathematics Subject Classification
Primary 33B15 Secondary 41A60 26D15Notes
References
- 1.Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66, 373–389 (1997)MathSciNetCrossRefGoogle Scholar
- 2.Alzer, H.: Inequalities for the volume of the unit ball in \(\mathbb{R}^{n}\). J. Math. Anal. Appl. 252, 353–363 (2000)MathSciNetCrossRefGoogle Scholar
- 3.Alzer, H.: Inequalities for the volume of the unit ball in \(\mathbb{R}^{n}\). II. Mediterr. J. Math. 5, 395–413 (2008)CrossRefGoogle Scholar
- 4.Anderson, G.D., Qiu, S.-L.: A monotoneity property of the gamma function. Proc. Am. Math. Soc. 125, 3355–3362 (1997)MathSciNetCrossRefGoogle Scholar
- 5.Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Special functions of quasiconformal theory. Expo. Math. 7, 97–136 (1989)MathSciNetzbMATHGoogle Scholar
- 6.Ban, T., Chen, C.-P.: New inequalities for the volume of the unit ball in \({\mathbb{R}}^{n}\). J. Math. Inequalities 11, 527–542 (2017)MathSciNetCrossRefGoogle Scholar
- 7.Böhm, J., Hertel, E.: Polyedergeometrie in n-dimensionalen Räumen konstanter Krmmung. Birkhäuser, Basel (1981)zbMATHGoogle Scholar
- 8.Borgwardt, K.H.: The Simplex Method. Springer, Berlin (1987)CrossRefGoogle Scholar
- 9.Chen, C.-P.: Inequalities and asymptotic expansions associated with the Ramanujan and Nemes formulas for the gamma function. Appl. Math. Comput. 261, 337–350 (2015)MathSciNetzbMATHGoogle Scholar
- 10.Chen, C.-P., Elezović, N., Vukšć, L.: Asymptotic formulae associated with the Wallis power function and digamma function. J. Class. Anal. 2, 151–166 (2013)MathSciNetCrossRefGoogle Scholar
- 11.Chen, C.-P., Lin, L.: Inequalities for the volume of the unit ball in \(\mathbb{R}^{n}\). Mediterr. J. Math. 11, 299–314 (2014)MathSciNetCrossRefGoogle Scholar
- 12.Chen, C.-P., Paris, R.B.: Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function. Appl. Math. Comput. 250, 514–529 (2015)MathSciNetzbMATHGoogle Scholar
- 13.Dubourdieu, J.: Sur un théorème de M. S. Bernstein relatif \(\grave{a}\) la transformation de Laplace-Stieltjes. Compos. Math. 7, 96–111 (1939). (in French) MathSciNetzbMATHGoogle Scholar
- 14.Guo, B.-N., Qi, F.: Monotonicity and logarithmic convexity relating to the volume of the unit ball. Optim. Lett. 7, 1139–1153 (2013)MathSciNetCrossRefGoogle Scholar
- 15.van Haeringen, H.: Completely monotonic and related functions. J. Math. Anal. Appl. 204, 389–408 (1996)MathSciNetCrossRefGoogle Scholar
- 16.Klain, D.A., Rota, G.-C.: A continuous analogue of Sperner’s theorem. Commun. Pure Appl. Math. 50, 205–223 (1997)MathSciNetCrossRefGoogle Scholar
- 17.Koumandos, S.: Remarks on some completely monotonic functions. J. Math. Anal. Appl. 324, 1458–1461 (2006)MathSciNetCrossRefGoogle Scholar
- 18.Koumandos, S., Pedersen, H.L.: Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler’s gamma function. J. Math. Anal. Appl. 355, 33–40 (2009)MathSciNetCrossRefGoogle Scholar
- 19.Lu, D., Zhang, P.: A new general asymptotic formula and inequalities involving the volume of the unit ball. J. Number Theory 170, 302–314 (2017)MathSciNetCrossRefGoogle Scholar
- 20.Luke, Y.L.: The Special Functions and their Approximations, vol. I. Academic Press, New York (1969)zbMATHGoogle Scholar
- 21.Merkle, M.: Gurland’s ratio for the gamma function. Comput. Math. Appl. 49, 389–406 (2005)MathSciNetCrossRefGoogle Scholar
- 22.Mortici, C.: Monotonicity properties of the volume of the unit ball in \(\mathbb{R}^{n}\). Optim. Lett. 4, 457–464 (2010)MathSciNetCrossRefGoogle Scholar
- 23.Mortici, C.: Estimates of the function and quotient by minc-Sathre. Appl. Math. Comput. 253, 52–60 (2015)MathSciNetzbMATHGoogle Scholar
- 24.Mortici, C.: Series associated to some expressions involving the volume of the unit ball and applications. Appl. Math. Comput. 294, 121–138 (2017)MathSciNetGoogle Scholar
- 25.Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
- 26.Paris, R.B., Kaminski, D.: Asymptotics and Mellin–Barnes Integrals. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
- 27.Temme, N.M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley, New York (1996)CrossRefGoogle Scholar
- 28.Yin, L., Huang, L.-G.: Some inequalities for the volume of the unit ball. J. Class. Anal. 6, 39–46 (2015)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019