Advertisement

Results in Mathematics

, 74:36 | Cite as

Harmonic Functions on Metric Graphs Under the Anti-Kirchhoff Law

  • Joachim von BelowEmail author
  • José A. Lubary
Article
  • 31 Downloads

Abstract

When does an infinite metric graph allow nonconstant bounded harmonic functions under the anti-Kirchhoff transition law? We give a complete answer to this question in the cases where Liouville’s theorem holds, for trees, for graphs with finitely many essential ramification nodes and for generalized lattices. It turns out that the occurrence of nonconstant bounded harmonic functions under the anti-Kirchhoff law differs strongly from the one under the classical continuity condition combined with the Kirchhoff incident flow law.

Keywords

Harmonic functions Liouville’s theorem infinite graphs metric graphs quantum graphs anti-Kirchhoff law generalized lattices 

Mathematics Subject Classification

35R02 35J25 34B45 05C50 05C10 05C63 31C05 

Notes

Acknowledgements

Joachim von Below is grateful to the research group GREDPA at UPC Barcelona for the invitation in 2018. José A. Lubary is grateful to the LMPA Joseph Liouville at ULCO in Calais for the invitation in 2018. The authors are indebted to the anonymous referee for valuable remarks.

References

  1. 1.
    von Below, J., Mugnolo, D.: The spectrum of the Hilbert space valued second derivative with general self-adjoint boundary conditions. Linear Algebra Appl. 439, 1792–1814 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Mugnolo, D.: Vector-valued heat equations and networks with coupled dynamic boundary conditions. Adv. Differ. Equ. 15, 1125–1160 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    von Below, J., Lubary, J.A.: Harmonic functions on locally finite networks. Results Math. 45, 1–20 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Biggs, N.L.: Algebraic Graph Theory. Cambridge Tracts Mathematics, vol. 67, 1st edn. Cambridge University Press (1967)Google Scholar
  5. 5.
    Biggs, N.L.: Algebraic Graph Theory. Cambridge Tracts Mathematics, vol. 67, 2nd edn. Cambridge University Press (1993)Google Scholar
  6. 6.
    Mohar, B., Woess, W.: A survey on spectra of infinite graphs. Bull. Lond. Math. Soc. 21, 209–234 (1989)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wilson, R.J.: Introduction to Graph Theory. Oliver & Boyd, Edinburgh (1972)zbMATHGoogle Scholar
  8. 8.
    von Below, J., Lubary, J.A.: The eigenvalues of the Laplacian on locally finite networks. Results Math. 47, 199–225 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    von Below, J.: A characteristic equation associated with an eigenvalue problem on \({C}^2\)-networks. Linear Algebra Appl. 71, 309–325 (1985)MathSciNetCrossRefGoogle Scholar
  10. 10.
    von Below, J., Lubary, J.A., Vasseur, B.: Some remarks on the eigenvalue multiplicities of the Laplacian on infinite locally finite trees. Results Math. 63, 1331–1350 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    von Below, J.: The index of a periodic graph. Results Math. 25, 198–223 (1994)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Collatz, L.: Spektren periodischer Graphen. Result. Math. 1, 42–53 (1979)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Woess, W.: Random Walks on Infinite Graphs and Groups, vol. 138. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LMPA Joseph Liouville ULCO, FR CNRS Math. 2956Universités Lille Nord de FranceCalais CedexFrance
  2. 2.Departament de MatemàtiquesUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations