Results in Mathematics

, 74:50 | Cite as

On the Fractional Sums of Some Special Functions

  • Banu Ünalmış UzunEmail author


We obtain new relations involving the Lerch transcendent and establish some closed-form expressions using special functions like the Riemann and Hurwitz zeta functions and fractional sums. We also get some formulae for the specific values of the derivative of Lerch transcendent.


Fractional sum polylogarithm Lerch transcendent Riemann \(\zeta \) function Hurwitz \(\zeta \) function 

Mathematics Subject Classification

Primary 11M35 Secondary 33B15 30B99 



  1. 1.
    Bateman, H., Erdélyi, A.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953)zbMATHGoogle Scholar
  2. 2.
    Cvijović, D., Klinowski, J.: Closed-form summation of some trigonometric series. Math. Comput. 64, 205–210 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dancs, M.J., He, T.-X.: An Euler-type formula for \(\zeta (2k+1)\). J. Number Theory 118, 192–199 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Guillera, J., Sondow, J.: Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent. Ramanujan J. 16, 247–270 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lima, F.M.S.: An Euler-type formula for \(\beta (2n)\) and closed-form expressions for a class of zeta series. Integr. Transforms Spec. Funct. 23(9), 649–657 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Miller, J., Adamchik, V.: Derivatives of the Hurwitz zeta function for rational arguments. J. Comput. Appl. Math. 100, 201–206 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Müller, M., Schleicher, D.: How to add a non-integer number of terms, and how to produce unusual infinite summations. Comput. Appl. Math. 178, 347–360 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Müller, M., Schleicher, D.: Fractional sums and Euler-like identities. Ramanujan J. 21(2), 123–143 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Müller, M., Schleicher, D.: How to add a noninteger number of terms: from axioms to new identities. Am. Math. Mon. 118(2), 136–152 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nakamura, T.: Some formulas related to Hurwitz–Lerch zeta functions. Ramanujan J. 21(3), 285–302 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Oldham, K., Myland, J., Spanier, J.: An Atlas of Functions: With Equator, the Atlas Function Calculator, 2nd edn. Springer, New York (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsIşık UniversityŞileTurkey

Personalised recommendations