Results in Mathematics

, 74:32 | Cite as

Extending Structures and Classifying Complements for Left-Symmetric Algebras

  • Yanyong HongEmail author


Let A be a left-symmetric (resp. Novikov) algebra, E be a vector space containing A as a subspace and V be a complement of A in E. The extending structures problem which asks for the classification of all left-symmetric (resp. Novikov) algebra structures on E up to an isomorphism which stabilizes A such that A is a subalgebra of E is studied. In this paper, the definition of the unified product for left-symmetric (resp. Novikov) algebras is introduced. It is shown that there exists a left-symmetric (resp. Novikov) algebra structure on E such that A is a subalgebra of E if and only if E is isomorphic to a unified product of A and V. A cohomological type object \(\mathcal {H}_A^2(V,A)\) is constructed to give a theoretical answer to the extending structures problem. Furthermore, given an extension \(A\subset E\) of left-symmetric (resp. Novikov) algebras, another cohomological type object is constructed to classify all complements of A in E. Several examples are provided in detail.


Left-symmetric algebra Novikov algebra the extending structures problem matched pair complements quasicentroid 

Mathematics Subject Classification

17A30 17D25 17A60 18G60 



This work was done during the author’s visit to TongJi University. He would like to thank Professor Yucai Su for the hospitality, comments on this work and valuable discussions on Lie algebras. Moreover, this work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ16A010011) and the National Natural Science Foundation of China (No. 11501515, 11871421).


  1. 1.
    Agore, A.L.: Classifying complements for associative algebras. Linear Algebra Appl. 446, 345–355 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Agore, A.L., Militaru, G.: Extending structures II: the quantum version. J. Algebra 336, 321–341 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Agore, A.L., Militaru, G.: Classifying complements for Hopf algebras and Lie algebras. J. Algebra 391, 193–208 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Agore, A.L., Militaru, G.: Extending structures I: the level of groups. Algebras Represent. Theory 17, 831–848 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Agore, A.L., Militaru, G.: Extending structures for Lie algebras. Monatsh. Math. 174, 169–193 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Agore, A.L., Militaru, G.: Extending structures, Galois groups and supersolvable associative algebras. Monatsh. Math. 181, 1–33 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Agore, A.L., Militaru, G.: Unified products for Leibniz algebras. Appl. Linear Algebra Appl. 439, 2609–2633 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Agore, A.L., Militaru, G.: Classifying complements for groups. Applications. Ann. l’institut Fourier 65, 1349–1365 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bai, C.M.: Left-symmetric bialgebras and an analogue of the classical Yang–Baxter equation. Commun. Contemp. Math. 10, 221–260 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bai, C.M.: Bijective 1-cocycles and classification of 3-dimensional left-symmetric algebras. Commun. Algebra 37, 1016–1057 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bai, C.M., Meng, D.J.: The classification of left-symmetric algabra in dimension 2. Chin. Sci. Bull. 23, 2207 (1996)Google Scholar
  12. 12.
    Bai, C.M., Meng, D.J.: The classification of Novikov algebras in low dimensions. J. Phys. A Math. Gen. 34, 1581 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Balinskii, A.A., Novikov, S.P.: Poisson brackets of hydrodynamical type, Frobenius algebras and Lie algebras. Dokladu AN SSSR 283(5), 1036–1039 (1985)zbMATHGoogle Scholar
  14. 14.
    Burde, D.: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Cent. Eur. J. Math. 4, 323–357 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Burde, D.: Simple left-symmetric algebras with solvable Lie algebra. Manuscr. Math. 95, 397–411 (1998)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Burde, D., de Graaf, W.: Classification of Novikov algebras. Appl. Algebra Eng. Commun. Comput. 24, 1–15 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dekimpe, K., Igodt, P., Ongenae, V.: The five-dimensional complete left-symmetric algebra structures compatible with an abelian Lie algebra structure. Linear Algebra Appl. 263, 349–375 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dzhumadil’daev, A.: Cohomologies and deformations of right-symmetric algebras. J. Math. Sci. 93(6), 836–876 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gel’fend, I.M., Dorfman, I.Ya.: Hamiltonian operators and algebraic structures related to them. Funkts. Anal. Prilozhen 13, 13–30 (1979)Google Scholar
  20. 20.
    Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. 78, 267–288 (1963)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kim, H.: Complete left-invariant affine structures on nilpotent Lie groups. J. Differ. Geom. 24, 373–394 (1986)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kim, H.: Extensions of left-symmetric algebras. Algebras Groups Geom. 4, 73–117 (1987)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Koszul, J.L.: Domaines bornés homogénes et orbites de transformations affines. Bull. Soc. Math. France 89, 515–533 (1961)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Medina, A.: Flat left-invariant connections adapted to the automorphism structure of a Lie group. J. Diff. Geom. 16, 445–474 (1981)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Osborn, J.M.: Novikov algebras. Nova J. Algebra Geom. 1, 1–14 (1992)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Vinberg, E.B.: Convex homogeneous cones. Trans. Mosc. Math. Soc. 12, 340–403 (1963)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsHangzhou Normal UniversityHangzhouPeople’s Republic of China

Personalised recommendations