Advertisement

Results in Mathematics

, 74:29 | Cite as

On Fejer Type Inequalities for Convex Mappings Utilizing Fractional Integrals of a Function with Respect to Another Function

  • Hüseyin BudakEmail author
Article
  • 19 Downloads

Abstract

In this work, we first establish Hermite–Hadamard–Fejer type inequalities for convex function involving fractional integrals with respect to another function which are generalization of some important fractional integrals such as the Riemann–Liouville fractional integrals and the Hadamard fractional integrals. Moreover, we obtain some trapezoid type inequalities for these kind of fractional integrals. The results given in this paper provide generalization of several inequalities obtained in earlier studies.

Keywords

Hermite–Hadamard–Fejer inequalities generalized fractional integrals convex functions 

Mathematics Subject Classification

26D07 26D10 26D15 26A33 

Notes

References

  1. 1.
    Azpeitia, A.G.: Convex functions and the Hadamard inequality. Rev. Colomb. Math. 28, 7–12 (1994)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ali, A., Gulshan, G., Hussain, R., Latif, A., Muddassar, M.: Generalized inequalities of the type of Hermite–Hadamard–Fejer with quasi-convex functions by way of \(\mathit{k}\)-fractional derivatives. J. Comput. Anal. Appl. 22(7), 1208–1219 (2017)MathSciNetGoogle Scholar
  3. 3.
    Bakula, M.K., Pečarić, J.: Note on some Hadamard-type inequalities. J. Inequal. Pure Appl. Math. 5(3), 74 (2004)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bombardelli, M., Varosanec, S.: Properties of h-convex functions related to the Hermite–Hadamard–Fejer inequalities. Comput. Math. Appl. 58, 1869–1877 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Budak, H., Sarikaya, M.Z.: Hermite–Hadamard type inequalities for s-convex mappings via fractional integrals of a function with respect to another function. Fasc. Math. 27, 25–36 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chen, H., Katugampola, U.N.: Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 446, 1274–1291 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, F., Wu, S.: Fejer and Hermite–Hadamard type inqequalities for harmonically convex functions. J. Appl. Math. 2014, 6 (2014)Google Scholar
  8. 8.
    Dahmani, Z.: On Minkowski and Hermite–Hadamard integral inequalities via fractional integration. Ann. Funct. Anal. 1(1), 51–58 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Deng, J., Wang, J.: Fractional Hermite–Hadamard inequalities for (\(\alpha, m\))-logarithmically convex functions. J. Inequal. Appl. 2013, 364 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dragomir, S.S., Pearce, C.E.M.: Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs. Victoria University, Melbourne (2000)Google Scholar
  11. 11.
    Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11(5), 91–95 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fejer, L.: Über die Fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss. 24, 369–390 (1906). (Hungarian)zbMATHGoogle Scholar
  13. 13.
    Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order, pp. 223–276. Springer, Wien (1997)Google Scholar
  14. 14.
    Iscan, I.: Hermite–Hadamard–Fejer type inequalities for convex functions via fractional integrals. Stud. Univ. Babe ş-Bolyai Math. 60(3), 355–366 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Jleli, M., Samet, B.: On Hermite–Hadamard type inequalities via fractional integrals of a function with respect to another function. J. Nonlinear Sci. Appl. 9, 1252–1260 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier Sci. B.V, Amsterdam (2006)Google Scholar
  17. 17.
    Miller, S., Ross, B.: An introduction to the Fractional Calculus and Fractional Differential Equations, p. 2. John Wiley & Sons, Hoboken (1993)zbMATHGoogle Scholar
  18. 18.
    Mubeen, S., Iqbal, S., Tomar, M.: On Hermite–Hadamard type inequalities via fractional integrals of a function with respect to another function and \(k\)-parameter. J. Inequal. Math. Appl. 1, 1–9 (2016)Google Scholar
  19. 19.
    Pečarić, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, Boston (1992)zbMATHGoogle Scholar
  20. 20.
    Podlubni, I.: Fractional Differential Equations. Academic Press, San Diego (1999)Google Scholar
  21. 21.
    Peng, S., Wei, W., Wang, J.-R.: On the Hermite–Hadamard inequalities for convex functions via Hadamard fractional integrals. Facta Univ. Ser. Math. Inform. 29(1), 55–75 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Sarikaya, M.Z., Yaldiz, H., Erden, S.: Some inequalities associated with the Hermite–Hadamard–Fejer type for convex function. Math. Sci. 8, 117–124 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sarikaya, M.Z., Budak, H.: On Fejer type inequalities via local fractional integrals. J. Fract. Calc. Appl. 8(1), 59–77 (2017)MathSciNetGoogle Scholar
  24. 24.
    Sarikaya, M.Z., Set, E., Yaldiz, H., Basak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)CrossRefGoogle Scholar
  25. 25.
    Sarikaya, M.Z., Budak, H.: Generalized Hermite–Hadamard type integral inequalities for fractional integrals. Filomat 30(5), 1315–1326 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sarikaya, M.Z.: On new Hermite Hadamard Fejer type integral inequalities. Stud. Univ. Babes-Bolyai Math. 57(3), 377–386 (2012)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Sarikaya, M.Z., Budak, H.: Some Hermite–Hadamard type integral inequalities for twice differentiable mappings via fractional integrals. Facta Univ. Ser. Math. Inform. 29(4), 371–384 (2014)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Set, E., Sarikaya, M.Z., Ozdemir, M.E., Yildirim, H.: The Hermite–Hadamard’s inequality for some convex functions via fractional integrals and related results. JAMSI 10(2), 69–83 (2014)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Set, E., Işcan, I., Sarikaya, M.Z., Ozdemir, M.E.: On new inequalities of Hermite–Hadmard–Fejer type for convex functions via fractional integrals. Appl. Math. Comput. 259, 875–881 (2015)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Tseng, K.-L., Yang, G.-S., Hsu, K.-C.: Some inequalities for differentiable mappings and applications to Fejer inequality and weighted trapezoidal formula. Taiwan. J. Math. 15(4), 1737–1747 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang, J.R., Li, X., Zhu, C.: Refinements of Hermite–Hadamard type inequalities involving fractional integrals. Bull. Belg. Math. Soc. Simon Stevin 20, 655–666 (2013)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Wang, J.R., Zhu, C., Zhou, Y.: New generalized Hermite–Hadamard type inequalities and applications to special means. J. Inequal. Appl. 2013, 325 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhang, Y., Wang, J.: On some new Hermite–Hadamard inequalities involving Riemann–Liouville fractional integrals. J. Inequal. Appl. 2013, 220 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhang, Z., Wei, W., Wang, J.: Generalization of Hermite–Hadamard inequalities involving Hadamard fractional integrals. Filomat 29(7), 1515–1524 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang, Z., Wang, J.R., Deng, J.H.: Applying GG-convex function to Hermite–Hadamard inequalities involving Hadamard fractional integrals. Int. J. Math. Math. Sci. 2014, 20 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics Faculty of Science and ArtsDüzce UniversityDüzceTurkey

Personalised recommendations