Advertisement

Results in Mathematics

, 74:23 | Cite as

A Left Linear Weighted Composition Operator on Quaternionic Fock Space

  • Yu-Xia Liang
Article
  • 22 Downloads

Abstract

A left linear weighted composition operator \(W_{f,\varphi }\) is defined on slice regular quaternionic Fock space \(\mathcal {F}^2(\mathbb {H})\). We carry out a comprehensive analysis on its classical properties. Firstly, the boundedness and compactness of weighted composition operator on \(\mathcal {F}^2(\mathbb {H})\) are investigated systematically, which can be seen new and brief characterizations. And then all normal bounded weighted composition operators are found, particularly, equivalent conditions for self-adjoint weighted operators on \(\mathcal {F}^2(\mathbb {H})\) are developed. Finally, we describe all types of isometric weighted composition operators on \(\mathcal {F}^2(\mathbb {H})\).

Keywords

Weighted composition operator quaternionic Fock space boundedness compactness self-adjoint isometry 

Mathematics Subject Classification

Primary 30G35 47B38 

Notes

Acknowledgements

Y. X. Liang is supported by the National Natural Science Foundation of China (Grant No. 11701422).

References

  1. 1.
    Adler, S.: Quaternionic Quantum Field Theory. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  2. 2.
    Alpay, D., Colombo, F., Sabadini, I., Salomon, G.: The Fock Space in the Slice Hyperholomorphic Setting, pp. 43–59. Springer, Berlin (2014)zbMATHGoogle Scholar
  3. 3.
    Colombo, F., Gonzalez-Cervantes, J.O., et al.: On two approaches to the Bergman theory for slice regular functions. In: Advances in Hypercomplex Analysis, vol. 1, pp. 39–54. Springer INdAM Series, Berlin (2013)Google Scholar
  4. 4.
    Colombo, F., Sabadini, I., Sommen, F., Struppa, D.C.: Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, vol. 39. Birkhäuser, Boston (2004)CrossRefGoogle Scholar
  5. 5.
    Colombo, F., Sabadini, I., Struppa, D.C.: Slice Monogenic Functions, Noncommutative Functional Calculus. Springer, Basel (2011)CrossRefGoogle Scholar
  6. 6.
    Colombo, F., Sabadini, I., Struppa, D.C.: Entire Slice Regular Functions. Springer, Berlin (2016)CrossRefGoogle Scholar
  7. 7.
    Cowen, C.C., MacCluer, B.D.: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  8. 8.
    Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and \(n\)-Dimensional Space. Birkhäuser, Basel (2008)zbMATHGoogle Scholar
  9. 9.
    Horwitz, L.P., Razon, A.: Tensor product of quaternion Hilbert modules. In: Classical and Quantum Systems (Goslar), pp. 266–268 (1991)Google Scholar
  10. 10.
    Kumar, S., Manzoor, K.: Slice regular Besov spaces of hyperholomorphic functions and composition operators (2016). arXiv:1609.02394v1
  11. 11.
    Kumar, S., Manzoor, K., Singh, P.: Composition operators in Bloch spaces of slice hyperholomorphic functions. Adv. Appl. Clifford Algebra 27(2), 1459–1477 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lian, P., Liang, Y.X.: Weighted composition operator on quaternionic Fock space, arXiv: 1803.0678v1, pp. 1–39. (2018)
  13. 13.
    Le, T.: Normal and isometric weighted composition operators on the Fock space. Bull. Lond. Math. Soc. 46(4), 847–856 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sabadini, I., Saracco, A.: Carleson measures for Hardy and Bergman spaces in the quaternionic unit ball. J. Lond. Math. Soc. 95(3), 853–874 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, New York (1993)CrossRefGoogle Scholar
  16. 16.
    Villalba, C., Colombo, F., Gantner, J., et al.: Bloch, Besov and Dirichlet spaces of slice hyperholomorphic functions. Complex Anal. Oper. Theory 9(2), 479–517 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhao, L., Pang, C.: A class of weighted composition operators on the Fock space. J. Math. Res. Appl. 35(3), 303–310 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Zhu, K.H.: Analysis on Fock Spaces. Springer, New York (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesTianjin Normal UniversityTianjinPeople’s Republic of China

Personalised recommendations