Advertisement

On the Ramanujan Harmonic Number Expansion

  • Chao-Ping ChenEmail author
Article
  • 53 Downloads

Abstract

In this paper, we give a recursive relation for determining the coefficients of Ramanujan’s asymptotic expansion for the nth harmonic number, without the Bernoulli numbers and polynomials.

Keywords

Harmonic number Euler–Mascheroni constant asymptotic expansion 

Mathematics Subject Classification

Primary 41A60 Secondary 40A05 

References

  1. 1.
    Berndt, B.C.: Ramanujans Notebooks Part V. Springer, Berlin (1998)CrossRefGoogle Scholar
  2. 2.
    Chen, C.P.: Stirling expansions into negative powers of a triangular number. Ramanujan J. 39, 107–116 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, C.P.: On the coefficients of asymptotic expansion for the harmonic number by Ramanujan. Ramanujan J. 40, 279–290 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, C.P.: Ramanujan’s formula for the harmonic number. Appl. Math. Comput. 317, 121–128 (2018)MathSciNetGoogle Scholar
  5. 5.
    Chen, C.P., Cheng, J.X.: Ramanujan’s asymptotic expansion for the harmonic numbers. Ramanujan J. 38, 123–128 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, C.P., Li, L.: Two accelerated approximations to the Euler–Mascheroni constant. Sci. Magna 6, 99–107 (2010)MathSciNetGoogle Scholar
  7. 7.
    Feng, L., Wang, W.: Riordan array approach to the coefficients of Ramanujans harmonic Number expansion. Results Math. 71, 1413–1419 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hirschhorn, M.D.: Ramanujan’s enigmatic formula for the harmonic series. Ramanujan J. 27, 343–347 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Issaka, A.: An asymptotic series related to Ramanujan’s expansion for the \(n\)th harmonic number. Ramanujan J. 39, 303–313 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mortici, C.: On the Ramanujan–Lodge harmonic number expansion. Appl. Math. Comput. 251, 423–430 (2015)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Mortici, C., Chen, C.P.: On the harmonic number expansion by Ramanujan. J. Inequal. Appl. 2013, 222 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nemes, G.: Asymptotic expansion for \(\log n!\) in terms of the reciprocal of a triangular number. Acta Math. Hung. 129, 254–262 (2010)CrossRefGoogle Scholar
  13. 13.
    Ramanujan, S.: Notebook II. Narosa, New Delhi (1988)zbMATHGoogle Scholar
  14. 14.
    Villarino, M.B.: Ramanujan’s harmonic number expansion into negative powers of a triangular number. J. Inequal. Pure Appl. Math. 9(3), Article 89 (2008) http://www.emis.de/journals/JIPAM/images/245_07_JIPAM/245_07.pdf

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Mathematics and InformaticsHenan Polytechnic UniversityJiaozuo CityChina

Personalised recommendations