A Bernstein Theorem for Minimal Maps with Small Second Fundamental Form

  • Felix LubbeEmail author


We consider minimal maps \(f:M\rightarrow N\) between Riemannian manifolds \((M,\mathrm {g}_M)\) and \((N,\mathrm {g}_N)\), where M is compact and where the sectional curvatures satisfy \(\sec _N\le \sigma \le \sec _M\) for some \(\sigma >0\). Under certain assumptions on the differential of the map and the second fundamental form of the graph \(\varGamma (f)\) of f, we show that f is either the constant map or a totally geodesic isometric immersion.


Minimal maps Bernstein theorem higher codimension 

Mathematics Subject Classification

Primary 53C42 53C40 58J05 



I am grateful to Andreas Savas-Halilaj for valuable discussions. This research was initiated while I was supported by the Research Training Group 1463 of the DFG at the Leibniz Universität Hannover.


  1. 1.
    Ahlfors, L.V.: An extension of Schwarz’s lemma. Trans. Am. Math. Soc. 43(3), 359–364 (1938)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ecker, K., Huisken, G.: A Bernstein result for minimal graphs of control led growth. J. Differ. Geom. 31(2), 397–400 (1990)CrossRefGoogle Scholar
  3. 3.
    Fischer-Colbrie, D.: Some rigidity theorems for minimal submanifolds of the sphere. Acta Math. 145(1–2), 29–46 (1980)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hamilton, R.S.: Four-manifolds with positive curvature operator. J. Differ. Geom. 24(2), 153–179 (1986)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hildebrandt, S., Jost, J., Widman, K.-O.: Harmonic mappings and minimal submanifolds. Invent. Math. 62 (2), 269–298 (1980/1981)Google Scholar
  7. 7.
    Jost, J., Xin, Y.L.: Bernstein type theorems for higher codimension. Calc. Var. Partial Differ. Equ. 9(4), 277–296 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Jost, J., Xin, Y.L., Yang, L.: The Gauss image of entire graphs of higher codimension and Bernstein type theorems. Calc. Var. Partial Differ. Equ. 47(3–4), 711–737 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jost, J., Xin, Y.L., Yang, L.: The geometry of Grassmannian manifolds and Bernstein-type theorems for higher codimension. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 16(1), 1–39 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Li, G., Salavessa, I.M.C.: Bernstein–Heinz–Chern results in calibrated manifolds. Rev. Mat. Iberoam. 26(2), 651–692 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Savas-Halilaj, A., Smoczyk, K.: Bernstein theorems for length and area decreasing minimal maps. Calc. Var. Partial Differ. Equ. 50(3–4), 549–577 (2014). MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Schoen, R.M.: The role of harmonic mappings inrigidity and deformation problems. Complex geometry (Osaka, 1990), Lecture Notes in Pure and Applied Mathematics, Dekker, New York 1993, vol. 143, pp. 179–200 (1990)Google Scholar
  13. 13.
    Smoczyk, K., Wang, G., Xin, Y.L.: Bernstein type theorems with flat normal bundle. Calc. Var. Partial Differ. Equ. 26(1), 57–67 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, M.-T.: Long-time existence and convergence of graphic mean curvature flow in arbitrary codimension. Invent. Math. 148(3), 525–543 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, M.-T.: On graphic Bernstein type results in higher codimension. Trans. Am. Math. Soc. 355(1), 265–271 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yau, S.T.: A general Schwarz lemma for Kähler manifolds. Am. J. Math. 100(1), 197–203 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HamburgHamburgGermany

Personalised recommendations