Results in Mathematics

, 73:106 | Cite as

Characterization of Parabolic Hardy Spaces by Littlewood–Paley Functions

  • Shuichi SatoEmail author


We consider Littlewood–Paley functions associated with non-isotropic dilations. We prove that they can be used to characterize the parabolic Hardy spaces of Calderón–Torchinsky.


Littlewood–Paley functions parabolic Hardy spaces 

Mathematics Subject Classification

Primary 42B25 Secondary 42B30 


  1. 1.
    Benedek, A., Calderón, A.P., Panzone, R.: Convolution operators on Banach space valued functions. Proc. Natl. Acad. Sci. U. S. A. 48, 356–365 (1962)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Calderón, A.P.: Inequalities for the maximal function relative to a metric. Studia Math. 57, 297–306 (1976)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Calderón, A.P.: An atomic decomposition of distributions in parabolic \(H^p\) spaces. Adv. Math. 25, 216–225 (1977)CrossRefGoogle Scholar
  4. 4.
    Calderón, A.P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. Adv. Math. 16, 1–64 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Calderón, A.P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. II. Adv. Math. 24, 101–171 (1977)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Capri, O.N.: On an inequality in the theory of parabolic \(H^p\) spaces. Revista de la Unión Matemática Argentina 32, 17–28 (1985)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Fefferman, C., Stein, E.M.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton Univ. Press, Princeton (1982)zbMATHGoogle Scholar
  10. 10.
    Garcia-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam, New York, Oxford (1985)zbMATHGoogle Scholar
  11. 11.
    Genebashvili, I., Gogatishvili, A., Kokilashvili, V., Krbec, M.: Weight Theory for Integral Transforms on Spaces of Homogeneous Type. Pitman Monographs and Surveys in Pure and Appl. Math., vol. 92. Addison Wesley Longman, Boston (1998)zbMATHGoogle Scholar
  12. 12.
    Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Math., vol. 250, 3rd edn. Springer, New York (2014)zbMATHGoogle Scholar
  13. 13.
    Latter, R.H., Uchiyama, A.: The atomic decomposition for parabolic \(H^p\) spaces. Trans. Am. Math. Soc. 253, 391–398 (1979)zbMATHGoogle Scholar
  14. 14.
    Peetre, J.: On spaces of Triebel–Lizorkin type. Ark. Mat. 13, 123–130 (1975)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rubio de Francia, J.L., Ruiz, F.J., Torrea, J.L.: Calderón–Zygmund theory for operator-valued kernels. Adv. Math. 62, 7–48 (1986)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sato, S.: Remarks on square functions in the Littlewood–Paley theory. Bull. Aust. Math. Soc. 58, 199–211 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sato, S.: Littlewood–Paley equivalence and homogeneous Fourier multipliers. Integr. Equ. Oper. Theory 87, 15–44 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sato, S.: Vector valued inequalities and Littlewood–Paley operators on Hardy spaces. Hokkaido Math. J. (to appear). arXiv:1608.08059v2 [math.CA]
  19. 19.
    Sato, S.: Characterization of \(H^1\) Sobolev spaces by square functions of Marcinkiewicz type. J. Fourier Anal. Appl. (2018).
  20. 20.
    Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton (1971)zbMATHGoogle Scholar
  21. 21.
    Strömberg, J.-O., Torchinsky, A.: Weighted Hardy Spaces. Lecture Notes in Math., vol. 1381. Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong (1989)zbMATHGoogle Scholar
  22. 22.
    Uchiyama, A.: Characterization of \(H^p({\mathbb{R}}^n)\) in terms of generalized Littlewood–Paley \(g\)-functions. Studia Math. 81, 135–158 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of EducationKanazawa UniversityKanazawaJapan

Personalised recommendations