Results in Mathematics

, 73:103 | Cite as

Blow-Up Criteria and Regularity Criterion for the Three-Dimensional Magnetic Bénard System in the Multiplier Space

  • Liangliang MaEmail author


This study is devoted to investigating the blow-up criteria of strong solutions and regularity criterion of weak solutions for the magnetic Bénard system in \(\mathbb {R}^3\) in a sense of scaling invariant by employing a different decomposition for nonlinear terms. Firstly, the strong solution \((u,b,\theta )\) of magnetic Bénard system is proved to be smooth on (0, T] provided the velocity field u satisfies
$$\begin{aligned} u\in {L}^{\frac{2}{1-r}}(0,T;\dot{\mathbb {X}}_r(\mathbb {R}^3))\quad ~~with\quad 0\le {r}<1, \end{aligned}$$
or the gradient field of velocity \(\nabla {u}\) satisfies
$$\begin{aligned} \nabla {u}\in {L}^{\frac{2}{2-\gamma }}(0,T;\dot{\mathbb {X}}_\gamma (\mathbb {R}^3))\quad ~~with\quad 0\le {\gamma }\le {1}. \end{aligned}$$
Moreover, we prove that if the following conditions holds:
$$\begin{aligned} u\in {L}^\infty (0,T;\dot{\mathbb {X}}_1(\mathbb {R}^3))\quad and \quad \Vert u\Vert _{L^\infty (0,T;\dot{\mathbb {X}}_1(\mathbb {R}^3))}<\varepsilon , \end{aligned}$$
where \(\varepsilon >0\) is a suitable small constant, then the strong solution \((u,b,\theta )\) of magnetic Bénard system can also be extended beyond \(t=T\). Finally, we show that if some partial derivatives of the velocity components, magnetic components and temperature components (i.e. \(\tilde{\nabla }\tilde{u}\), \(\tilde{\nabla }\tilde{b}\), \(\tilde{\nabla }\theta \)) belong to the multiplier space, the solution \((u,b,\theta )\) actually is smooth on (0, T). Our results extend and generalize the recent works (Qiu et al.  in Commun Nonlinear Sci Numer Simul 16:1820–1824, 2011; Tian in J Funct Anal, 2017.; Zhou and Gala in Z Angew Math Phys 61:193–199, 2010; Zhang et al. in Bound Value Probl 270:1–7, 2013) respectively on the blow-up criteria for the three-dimensional Boussinesq system and MHD system in the multiplier space.


Magnetic Bénard system blow-up criterion a priori estimates multiplier space 

Mathematics Subject Classification

35Q35 35B65 35Q30 76D05 35Q30 


  1. 1.
    Beirão da Veiga, H.: A new regularity class for the Navier Stokes equations in \(\mathbb{R}^n\). Chin. Ann. Math. 16, 407–412 (1995)zbMATHGoogle Scholar
  2. 2.
    Cao, C.: Sufficient conditions for the regularity to the 3D Navier–Stokes equations. Discrete Contin. Dyn. Syst. 26, 1141–1151 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cao, C., Titi, E.: Regularity criteria for the three-dimensional Navier-Stokes equations. Indiana Univ. Math. J. 57, 2643–2661 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cao, C., Wu, J.: Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 248, 2263–2274 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cao, C., Wu, J.: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. 226, 1803–1822 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, Q., Miao, C., Zhang, Z.: On the regularity criterion of weak solution for the 3D viscous magnetohydrodynamics equations. Commun. Math. Phys. 284, 919–930 (2008)CrossRefGoogle Scholar
  7. 7.
    Chen, Q., Miao, C., Zhang, Z.: The Beale–Kato–Majda criterion to the 3D Magneto-hydrodynamics equations. Commun. Math. Phys. 275, 861–872 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, Q., Miao, C., Zhang, Z.: On the uniqueness of weak solutions for the 3D Navier–Stokes equations. Ann. Inst. Henri Poincare Nonlinear Anal. 26, 2165–2180 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cheng, J., Du, L.: On two-dimensional magnetic Bénard problem with mixed partial viscosity. J. Math. Fluid Mech. 17, 769–797 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dong, B., Song, J., Zhang, W.: Blow-up criterion via pressure of three-dimensional Boussinesq equations with partial viscosity. Sci. Sin. Math. 40, 1225–1236 (2010)Google Scholar
  11. 11.
    Fan, J., Ozawa, T.: Regularity criteria for the 3D density-dependent Boussinesq equations. Nonlinearity 22, 553–568 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Geng, J., Fan, J.: Jishan: a note on regularity criterion for the 3D Boussinesq system with zero thermal conductivity. Appl. Math. Lett. 25, 63–66 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Galdi, G.P.: Non-linear stability of the magnetic Bénard problem via a generalized energy method. Arch. Ration. Mech. Anal. 87, 167–186 (1985)CrossRefGoogle Scholar
  14. 14.
    He, C., Xin, Z.: Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamics equations. J. Funct. Anal. 227, 113–152 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ishimura, N., Morimoto, H.: Remarks on the blow-up criterion for the 3-D Boussinesq equations. Math. Models Methods Appl. Sci. 9, 1323–1332 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jin, L.: A note on regularity criteria for the viscous Camassa–Holm equations in the multiplier spaces. Appl. Math. Lett. 23, 821–823 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jia, Y., Zhang, X., Dong, B.: Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Commun. Pure Appl. Anal. 12, 923–937 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jiang, Z., Gala, S., Ni, L.: On the regularity criterion for the solutions of 3D Navier–Stokes equations in weak multiplier spaces. Math. Methods Appl. Sci. 34, 2060–2064 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lemarié-Rieusset, P.G.: Recent Developments in the Navier–Stokes Problem. Research Notes in Mathematics, vol. 431. Chapman & Hall/CRC, Boca Raton (2002)Google Scholar
  20. 20.
    Liu, Q., Cui, S., Gala, S.: Logarithmically improved criteria for the 3D nematic liquid crystal flows in the multiplier spaces. Acta Appl. Math. 117, 107–114 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lemarié-Rieusset, P.G., Gala, S.: Multipliers between Sobolev spaces and fractional differentiation. J. Math. Anal. Appl. 322, 1030–1054 (2006)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lin, H., Du, L.: Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions. Nonlinearity 26, 219–239 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ma, L.: Global existence of smooth solutions for three-dimensional magnetic Bénard system with mixed partial dissipation, magnetic diffusion and thermal diffusivity. J. Math. Anal. Appl. 461, 1639–1652 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ma, L.: Global regularity results for the \(2\frac{1}{2}\)D magnetic Bénard system with mixed partial viscosity. Appl. Anal. 67, 1–22 (2017)CrossRefGoogle Scholar
  25. 25.
    Ma, L., Zhang, L.: Global existence of weak solution and regularity criteria for the 2D Bénard system with partial dissipation. Bound. Value Probl. (2018).
  26. 26.
    Miao, C.: On the uniqueness theorems for the unbounded classical solution of the magnetic Bénard system. Syst. Sci. Math. Sci. 13, 277–284 (2000)zbMATHGoogle Scholar
  27. 27.
    Mulone, G., Rionero, S.: Necessary and sufficient conditions for nonlinear stability in the magnetic Bénard problem. Arch. Ration. Mech. Anal. 166, 197–218 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Nakamura, M.A.: On the magnetic Bénard problem. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38, 359–393 (1991)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Nakamura, M.: Regularity and analyticity of the solutions of the magnetic Bénard problem. Adv. Math. Sci. Appl. 2, 117–137 (1993)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Qiu, H., Du, Y., Yao, Z.: Blow-up criteria for 3D Boussinesq equations in the multiplier space. Commun. Nonlinear Sci. Numer. Simul. 16, 1820–1824 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tian, C.: A regularity criterion for the 3D incompressible magnetohydrodynamics equations in the multiplier spaces. J. Funct. Spaces 2017, 1–5 (2017). MathSciNetGoogle Scholar
  33. 33.
    Yamazaki, K.: Ergodicity of the two-dimensional magnetic Bénard problem. Electron. J. Differ. Equ. 2016, 1–24 (2016)CrossRefGoogle Scholar
  34. 34.
    Zhou, Y., Fan, J., Nakamura, G.: Global Cauchy problem for a 2D magnetic Bénard problem with zero thermal conductivity. Appl. Math. Lett. 26, 627–630 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhu, X.: A regularity criterion for the Navier-Stokes equations in the multiplier spaces. Abstr. Appl. Anal. 2012, 1–7 (2012). MathSciNetCrossRefGoogle Scholar
  36. 36.
    Zhou, Y., Gala, S.: Regularity criteria for the solutions to the 3D MHD equations in the multiplier space. Z. Angew. Math. Phys. 61, 193–199 (2010)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zhang, Z., Hong, P., Zhang, D., Qiu, S.: A regularity criterion for the 3D MHD equations in terms of the gradient of the pressure in the multiplier spaces. Arab. J. Math. 4, 153–157 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhang, Z., Ouyang, X., Zhong, D., Qiu, S.: Remarks on the regularity criteria for the 3D MHD equations in the multiplier spaces. Bound. Value Probl. 270, 1–7 (2013)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Zhang, Z., Tang, T.: Global regularity for a special family of axisymmetric solutions to the three-dimensional magnetic Bénard problem. Anal. Appl. (2017).
  40. 40.
    Zhang, H., Zhao, Y.: Blow-up criterion for strong solutions to the 3D magneto-micropolar fluid equations in the multiplier space. Electron. J. Differ. Equ. 188, 1–7 (2012)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and ComputerPanzhihua UniversityPanzhihuaPeople’s Republic of China

Personalised recommendations