Some Results on Fusion Frames and g-Frames

  • Nguyen Quynh NgaEmail author


In this paper, we discuss some aspects where fusion frames and g-frames behave differently from frames. Several counterexamples to make clear their different behaviour are given. We also improve some results on g-frames. Moreover, we extend the notion of redundancy to g-frames and show that most of the desirable properties of lower and upper redundancies on frames and fusion frames can carry over g-frames. We also study the relationship between redundancy of g-frames and their dual g-frames, redundancy for infinite g-frames and the excess of g-frames.


Frame fusion frame g-frame redundancy excess 

Mathematics Subject Classification

42C15 46C05 41A58 


  1. 1.
    Abdollahpour, M., Bagarello, F.: On some properties of g-frames and g-coherent states. Nuovo Cimento Soc. Ital. Fis. B 125(11), 1327–1342 (2010)MathSciNetGoogle Scholar
  2. 2.
    Asgari, M., Khosravi, A.: Frames and bases of subspaces in Hilbert spaces. J. Math. Anal. Appl. 308(2), 541–553 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Balan, R., Casazza, P., Heil, C., Landau, Z.: Deficits and excesses of frames. Adv. Comput. Math. 18, 93–116 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bodmann, B., Casazza, P., Kutyniok, G.: A quantitative notion of redundancy for finite frames. Appl. Comput. Harmon. Anal. 30, 348–362 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Casazza, P., Kutyniok, G.: Frames of subspaces. Contemp. Math. 345, 87–113 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Casazza, P., Kutyniok, G., Li, S.: Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 25, 114–132 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Chuong, N.M., Egorov, Yu.V., Khrennikov, A., Meyer, Y., Mumford, D. (Eds): Harmonic, Wavelet, and p-Adic Analysis. World Scientific, Singapore (2007)Google Scholar
  9. 9.
    Chuong, N.M., Nirenberg, L., Tutschke, W. (Eds): Abstract and Applied Mathematics. World Scientific, Singapore (2002)Google Scholar
  10. 10.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Trans. AMS 72, 341–366 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goyal, V., Kovacevic, J., Kelner, J.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10, 203–233 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Guo, X.: On redundancy, dilations and canonical duals of g-frames in Hilbert spaces. Banach J. Math. Anal. 9(4), 81–99 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hassibi, B., Hochwald, B., Shokrollahi, A., Sweldens, W.: Representaion theory for high rate multiple-antenna code design. IEEE Trans. Inform. Theory 47, 2335–2367 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Julien, G., Kovalev, L., Larson, D., Nguyen, N., Tener, J.: Projections and idempotents with fixed diagonal and the homotopy problem for unit tight frames. Oper. Matrices 5(1), 139–155 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Khosravi, A., Musazadeh, K.: Fusion frames and g-frames. J. Math. Anal. Appl. 342, 1068–1083 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Najati, A., Faroughi, M., Rahimi, A.: g-Frames and stability of g-frames in Hilbert spaces. Methods Funct. Anal. Toppol. 14(3), 271–286 (2008)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Rahimi, A., Zandi, G., Daraby, B.: Redundancy of fusion frames in Hilbert spaces. Complex Anal. Oper. Theory 10, 545–565 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sun, W.: g-Frames and g-Riesz bases. J. Math. Anal. Appl. 322, 437–452 (2006)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate University of Science and TechnologyVietnam Academy of Science and TechnologyCau GiayVietnam
  2. 2.Institute of MathematicsVietnam Academy of Science and TechnologyCau GiayVietnam

Personalised recommendations