Recursive Moving Frames for Lie Pseudo-Groups

Article
  • 31 Downloads

Abstract

This paper introduces a new, fully recursive algorithm for computing moving frames and differential invariants of Lie pseudo-group actions. The recursive method avoids unwieldy symbolic expressions that complicate the treatment of large scale applications of the equivariant moving frame method. The development leads to novel results on partial moving frames, structure equations, and new differential operators underlying the moving frame construction. In particular, our methods produce a streamlined computational algorithm for determining moving frames and differential invariants of finite-dimensional Lie group actions.

Keywords

Differential invariant lie pseudo-group Maurer–Cartan form moving frame recurrence formula 

Mathematics Subject Classification

53A55 58A15 58A20 58H05 58J70 

Notes

Acknowledgements

We would like to thank the referees for their careful reading of the paper, which led to a considerable improvement in the exposition as well as corrections to the original version.

References

  1. 1.
    Anderson, I.M.: The variational bicomplex. Utah State Technical Report (1989). http://math.usu.edu/~fg_mp
  2. 2.
    Arnaldsson, Ö.: Involutive moving frames. Ph.D. thesis, University of Minnesota (2017)Google Scholar
  3. 3.
    Arnaldsson, Ö.: Reduced Cartan Characters for Polynomial Ideals and Termination of Cartan’s Equivalence Method (preprint). University of Iceland, Reykjavík (2017)Google Scholar
  4. 4.
    Benson, J., Valiquette, F.: Symmetry reduction of ordinary finite difference equations using moving frames. J. Phys. A 50, 195201 (2017)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Berchenko, I.A., Olver, P.J.: Symmetries of polynomials. J. Symb. Comput. 29, 485–514 (2000)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bihlo, A., Dos Santos Cardoso-Bihlo, E., Popovych, R.O.: Invariant parameterization and turbulence modeling on the beta-plane. Phys. D Nonlinear Phenom. 269, 48–62 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Boyko, V., Patera, J., Popovych, R.: Computation of invariants of Lie algebras by means of moving frames. J. Phys. A 39, 5749–5762 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S.: Differential and numerically invariant signature curves applied to object recognition. Int. J. Comput. Vis. 26, 107–135 (1998)CrossRefGoogle Scholar
  9. 9.
    Cantwell, B.J.: Introduction to Symmetry Analysis. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  10. 10.
    Cartan, É.: La Méthode du Repère Mobile, la Théorie des Groupes Continus, et les Espaces Généralisés, Exposés de Géométrie No. 5. Hermann, Paris (1935)MATHGoogle Scholar
  11. 11.
    Cartan, É.: Sur la structure des groupes infinis de transformations. In: Oeuvres Complètes, Part II, vol. 2, pp. 571–714. Gauthier-Villars, Paris (1953)Google Scholar
  12. 12.
    Cartan, É.: La structure des groupes infinis. In: Oeuvres Complètes, Part II, vol. 2, pp. 1335–1384. Gauthier-Villars, Paris (1953)Google Scholar
  13. 13.
    Champagne, B., Winternitz, P.: On the infinite-dimensional symmetry group of the Davey–Stewartson Equations. J. Math. Phys. 29, 1–8 (1988)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Cheh, J., Olver, P.J., Pohjanpelto, J.: Algorithms for differential invariants of symmetry groups of differential equations. Found. Comput. Math. 8, 501–532 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    David, D., Kamran, N., Levi, D., Winternitz, P.: Subalgebras of loop algebras and symmetries of the Kadomtsev–Petviashvili equation. Phys. Rev. Lett. 55, 2111–2113 (1985)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Deeley, R.J., Horwood, J.T., McLenaghan, R.G., Smirnov, R.G.: Theory of algebraic invariants of vector spaces of Killing tensors: methods for computing the fundamental invariants. Proc. Inst. Math. NAS Ukraine 50, 1079–1086 (2004)MathSciNetMATHGoogle Scholar
  17. 17.
    Fels, M., Olver, P.J.: Moving coframes. II. Regularization and theoretical foundations. Acta Appl. Math. 55, 127–208 (1999)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gonçalves, T.M.N., Mansfield, E.L.: On moving frames and Noether’s conservation laws. Stud. Appl. Math. 128, 1–29 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gonçalves, T.M.N., Mansfield, E.L.: Moving frames and conservation laws for Euclidean invariant Lagrangians. Stud. Appl. Math. 130, 134–166 (2013)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gonçalves, T.M.N., Mansfield, E.L.: Moving frames and Noether’s conservation laws—the general case. Forum Math. Sigma 4, e29 (2016)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Guggenheimer, H.W.: Differential Geometry. McGraw-Hill, New York (1963)MATHGoogle Scholar
  22. 22.
    Guillemin, V., Sternberg, S.: Deformation Theory of Pseudogroup Structures, Memoirs of the American Mathematical Society, vol. 64. Providence, AMS (1966)MATHGoogle Scholar
  23. 23.
    Hann, C.E., Hickman, M.S.: Projective curvature and integral invariants. Acta Appl. Math. 74(2), 177–193 (2002)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hubert, E., Kogan, I.A.: Rational invariants of a group action. Construction and rewriting. J. Symb. Comput. 42, 203–217 (2007)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Hubert, E., Kogan, I.A.: Smooth and algebraic invariants of a group action. Local and global constructions. Found. Comput. Math. 7, 455–493 (2007)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Itskov, V., Olver, P.J., Valiquette, F.: Lie completion of pseudo-groups. Transform. Groups 16, 161–173 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Jensen, G.R.: Higher Order Contact of Submanifolds of Homogeneous Spaces. Lecture Notes in Mathematics, vol. 610. Springer, New York (1977)CrossRefGoogle Scholar
  28. 28.
    Johnson, H.H.: Classical differential invariants and applications to partial differential equations. Math. Ann. 148, 308–329 (1962)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kim, P., Olver, P.J.: Geometric integration via multi-space. Regul. Chaotic Dyn. 9, 213–226 (2004)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kogan, I.A.: Inductive construction of moving frames. Contemp. Math. 285, 157–170 (2001)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Kogan, I.A., Moreno Maza, M.: Computation of canonical forms for ternary cubics. In: Mora, T. (ed.) Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, , The Association for Computing Machinery, New York, pp. 151–160 (2002)Google Scholar
  32. 32.
    Kogan, I.A., Olver, P.J.: Invariant Euler–Lagrange equations and the invariant variational bicomplex. Acta Appl. Math. 76, 137–193 (2003)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Kogan, I.A., Olver, P.J.: Invariants of objects and their images under surjective maps. Lobachevskii J. Math. 36, 260–285 (2015)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Kruglikov, B., Lychagin, V.: Global Lie–Tresse theorem. Sel. Math. 22, 1357–1411 (2016)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Kumpera, A.: Invariants différentiels d’un pseudogroupe de Lie. J. Diff. Geom. 10, 289–416 (1975)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Kumpera, A., Spencer, D.: Lie Equations. Princeton University Press, Princeton (1972)MATHGoogle Scholar
  37. 37.
    Kuranishi, M.: On the local theory of continuous infinite pseudo groups I. Nagoya Math. J. 15, 225–260 (1959)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Kuranishi, M.: On the local theory of continuous infinite pseudo groups II. Nagoya Math. J. 19, 55–91 (1961)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Lisle, I.G., Reid, G.J.: Geometry and structure of Lie pseudogroups from infinitesimal defining systems. J. Symb. Comput. 26, 355–379 (1998)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Mackenzie, K.: General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  41. 41.
    Mansfield, E.L.: A Practical Guide to the Invariant Calculus. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  42. 42.
    MaríBeffa, G., Mansfield, E.L.: Discrete moving frames on lattice varieties and lattice based multispaces. Found. Comput. Math. 18, 181–247 (2018)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Mansfield, E., MaríBeffa, G., Wang, J.P.: Discrete moving frames and differential-difference integrable systems. Found. Comput. Math. 13, 545–582 (2013)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Marí-Beffa, G., Olver, P.J.: Poisson structures for geometric curve flows on semi-simple homogeneous spaces. Regul. Chaotic Dyn. 15, 532–550 (2010)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    McLenaghan, R.G., Smirnov, R.G., The, D.: An extension of the classical theory of algebraic invariants to pseudo-Riemannian geometry and Hamiltonian mechanics. J. Math. Phys. 45, 1079–1120 (2004)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Morozov, O.: Moving coframes and symmetries of differential equations. J. Phys. A 35, 2965–2977 (2002)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Morozov, O.I.: Structure of symmetry groups via Cartan’s method: survey of four approaches. SIGMA Symmetry Integr. Geom. Methods Appl. 1, 006 (2005)MathSciNetMATHGoogle Scholar
  48. 48.
    Olver, P.J.: Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107, 2nd edn. Springer, New York (1993)CrossRefGoogle Scholar
  49. 49.
    Olver, P.J.: Equivalence, Invariants, and Symmetry. Cambridge University Press, Cambridge (1995)CrossRefMATHGoogle Scholar
  50. 50.
    Olver, P.J.: Classical Invariant Theory, London Mathematical Society Student Texts, vol. 44. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  51. 51.
    Olver, P.J.: Joint invariant signatures. Found. Comput. Math. 1, 3–67 (2001)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    Olver, P.J.: Geometric foundations of numerical algorithms and symmetry. Appl. Algebra Eng. Commun. Comput. 11, 417–436 (2001)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Olver, P.J.: Invariant submanifold flows. J. Phys. A 41, 344017 (2008)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Olver, P.J.: Lectures on moving frames. In: Levi, D., Olver, P., Thomova, Z., Winternitz, P. (eds.) Symmetries and Integrability of Difference Equations. London Mathematical Society Lecture Note Series, vol. 381, pp. 207–246. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  55. 55.
    Olver, P.J.: Recursive moving frames. Results Math. 60, 423–452 (2011)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Olver, P.J., Pohjanpelto, J.: Maurer–Cartan forms and the structure of Lie pseudo-groups. Selecta Math. 11, 99–126 (2005)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Olver, P.J., Pohjanpelto, J.: Moving frames for Lie pseudo-groups. Can. J. Math. 60, 1336–1386 (2008)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Olver, P.J., Pohjanpelto, J.: Differential invariant algebras of Lie pseudo-groups. Adv. Math. 222, 1746–1792 (2009)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Olver, P.J., Pohjanpelto, J.: Persistence of freeness for pseudo-group actions. Arkiv Mat. 50, 165–182 (2012)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Olver, P.J., Pohjanpelto, J., Valiquette, F.: On the structure of Lie pseudo-groups. SIGMA 5, 077 (2009)MathSciNetMATHGoogle Scholar
  61. 61.
    Olver, P.J., Polat, G.G.: Joint differential invariants of binary and ternary forms. University of Minnesota (preprint) (2017)Google Scholar
  62. 62.
    Rebelo, R., Valiquette, F.: Symmetry preserving numerical schemes for partial differential equations and their numerical tests. J. Differ. Equ. Appl. 19, 738–757 (2013)MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra, Algorithms and Computation in Mathematics, vol. 24. Springer, New York (2010)CrossRefMATHGoogle Scholar
  64. 64.
    Shemyakova, E., Mansfield, E.L.: Moving frames for Laplace invariants. In: Jeffrey, D. (ed.) Proceedings ISSAC2008. ACM, New York, pp. 295–302 (2008)Google Scholar
  65. 65.
    Singer, I.M., Sternberg, S.: The infinite groups of Lie and Cartan, part I, (The transitive groups). J. Anal. Math. 15, 1–114 (1965)CrossRefMATHGoogle Scholar
  66. 66.
    Stormark, O.: Lie’s Structural Approach to PDE Systems. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  67. 67.
    Tondeur, P.: Geometry of Foliations. Birkhäuser, Boston (1997)CrossRefMATHGoogle Scholar
  68. 68.
    Thompson, R., Valiquette, F.: On the cohomology of the invariant Euler–Lagrange complex. Acta Appl. Math. 116, 199–226 (2011)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Thompson, R., Valiquette, F.: Group foliation of differential equations using moving frames. Forum Math. Sigma 3, e22 (2015)MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    Thompson, R., Valiquette, F.: Group Foliation of Finite Difference Equations (preprint). SUNY, New Paltz (2015)MATHGoogle Scholar
  71. 71.
    Valiquette, F.: Solving local equivalence problems with the equivariant moving frame method. SIGMA Symmetry Integr. Geom. Methods Appl. 9, 029 (2013)MathSciNetMATHGoogle Scholar
  72. 72.
    Wears, T.H.: Signature varieties of polynomial functions. Ph.D. thesis, North Carolina State University (2011)Google Scholar
  73. 73.
    Weinstein, A.: Groupoids: unifying internal and external symmetry. A tour through some examples. Notices Am. Math. Soc. 43, 744–752 (1996)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of MathematicsSUNY at New PaltzNew PaltzUSA

Personalised recommendations