Results in Mathematics

, Volume 72, Issue 1–2, pp 813–841 | Cite as

Equivalent Quasi-Norms of Besov–Triebel–Lizorkin-Type Spaces via Derivatives



In this paper, applying the Peetre maximal function characterizations and the boundedness of Fourier multipliers on Besov-type and Triebel–Lizorkin-type spaces, as well as Besov–Morrey and Triebel–Lizorkin–Morrey spaces, the authors present some equivalent quasi-norms of these spaces in terms of derivatives.


Besov space Triebel–Lizorkin space Morrey space Peetre maximal function Fourier multiplier Lifting operator 

Mathematics Subject Classification

Primary 46E35 Secondary 42B15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cho, Y.K.: Continuous characterization of the Triebel–Lizorkin spaces and Fourier multipliers. Bull. Korean Math. Soc. 47, 839–857 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cho, Y.K., Kim, D.: A Fourier multiplier theorem on the Besov–Lipschitz spaces. Korean J. Math. 16, 85–90 (2008)Google Scholar
  3. 3.
    Fefferman, C., Stein, E.M.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions as initial data. C. R. Acad. Sci. Paris Sér. I Math. 317, 1127–1132 (1993)MathSciNetMATHGoogle Scholar
  6. 6.
    Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: New characterizations of Besov–Triebel–Lizorkin–Hausdorff spaces including coorbits and wavelets. J. Fourier Anal. Appl. 18, 1067–1111 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Sawano, Y., Tanaka, H.: Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Math. Z. 257, 871–905 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Sawano, Y., Yang, D., Yuan, W.: New applications of Besov-type and Triebel–Lizorkin-type spaces. J. Math. Anal. Appl. 363, 73–85 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Sickel, W.: Smoothness spaces related to Morrey spaces—a survey I. Eurasian Math. J. 3, 110–149 (2012)MathSciNetMATHGoogle Scholar
  10. 10.
    Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)MATHGoogle Scholar
  11. 11.
    Tang, L., Xu, J.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278, 904–917 (2005)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Triebel, H.: Fourier Analysis and Function Spaces, Teubner-Texte Math, vol. 7. Teubner, Leipzig (1977)Google Scholar
  13. 13.
    Triebel, H.: Theory of Function Spaces, Monographs in Math., vol. 78. Birkhäuser Verlag, Basel (1983)CrossRefGoogle Scholar
  14. 14.
    Triebel, H.: Theory of Function Spaces. II, Monographs in Math, vol. 84. Birkhäuser Verlag, Basel (1992)CrossRefGoogle Scholar
  15. 15.
    Triebel, H.: Tempered Homogeneous Function Spaces. European Mathematical Society (EMS), Zürich, EMS Series of Lectures in Mathematics (2015)Google Scholar
  16. 16.
    Ullrich, T.: Continuous characterizations of Besov–Lizorkin–Triebel spaces and new interpretations as coorbits. J. Funct. Spaces Appl. Art. ID 163213 (2012)Google Scholar
  17. 17.
    Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and \(Q\) spaces. J. Funct. Anal. 255, 2760–2809 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Yang, D., Yuan, W.: New Besov-type spaces and Triebel–Lizorkin-type spaces including \(Q\) spaces. Math. Z. 265, 451–480 (2010)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Yang, D., Yuan, W.: Characterizations of Besov-type and Triebel–Lizorkin-type spaces via maximal functions and local means. Nonlinear Anal. 73, 3805–3820 (2010)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Yang, D., Yuan, W.: Relations among Besov-type spaces, Triebel–Lizorkin-type spaces and generalized Carleson measure spaces. Appl. Anal. 92, 549–561 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Yang, D., Yuan, W., Zhuo, C.: Fourier multipliers on Triebel–Lizorkin-type. J. Funct. Spaces Appl. Art. ID 431016 (2012)Google Scholar
  22. 22.
    Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Math, vol. 2005. Springer-Verlag, Berlin (2010)Google Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesBeijing Normal UniversityBeijingPeople’s Republic of China
  2. 2.Laboratory of Mathematics and Complex SystemsMinistry of EducationBeijingPeople’s Republic of China

Personalised recommendations