Skip to main content
Log in

A Note on the Birkhoff Ergodic Theorem

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The classical Birkhoff ergodic theorem states that for an ergodic Markov process the limiting behaviour of the time average of a function (having finite p-th moment, \(p\ge 1\), with respect to the invariant measure) along the trajectories of the process, starting from the invariant measure, is a.s. and in the p-th mean constant and equals to the space average of the function with respect to the invariant measure. The crucial assumption here is that the process starts from the invariant measure, which is not always the case. In this paper, under the assumptions that the underlying process is a Markov process on Polish space, that it admits an invariant probability measure and that its marginal distributions converge to the invariant measure in the \(L^{1}\)-Wasserstein metric, we show that the assertion of the Birkhoff ergodic theorem holds in the p-th mean, \(p\ge 1\), for any bounded Lipschitz function and any initial distribution of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bass, R.F.: Markov processes with Lipschitz semigroups. Trans. Am. Math. Soc. 267(1), 307–320 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhattacharya, R.N.: On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Z. Wahrscheinlichkeitstheorie Verwandte Geb. 60(2), 185–201 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  4. Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Academic Press, New York (1968)

    MATH  Google Scholar 

  5. Bogachev, V.I.: Measure Theory, vol. II. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  6. Butkovsky, O.: Subgeometric rates of convergence of Markov processes in the Wasserstein metric. Ann. Appl. Probab. 24(2), 526–552 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, M.-F.: From Markov Chains to Non-equilibrium Particle Systems, 2nd edn. World Scientific Publishing Co., Inc., River Edge (2004)

    Book  MATH  Google Scholar 

  8. Folland, G.B.: Real Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  9. Hairer, M.: Ergodic properties of Markov processes. Lecture notes, University of Warwick. http://www.hairer.org/notes/Markov.pdf (2006)

  10. Hairer, M., Mattingly, J.C., Scheutzow, M.: Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations. Probab. Theory Relat. Fields 149(1–2), 223–259 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hernández-Lerma, O., Lasserre, J.B.: On the classification of Markov chains via occupation measures. Appl. Math. (Warsaw) 27(4), 489–498 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (1997)

    MATH  Google Scholar 

  13. Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes. II. Continuous-time processes and sampled chains. Adv. Appl. Probab. 25(3), 487–517 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability, second edition edn. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  15. Miculescu, R.: Approximations by Lipschitz functions generated by extensions. Real Anal. Exch. 28(1), 33–40 (2002/2003)

  16. Schilling, R.L.: Conservativeness and extensions of feller semigroups. Positivity 2, 239–256 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schilling, R.L., Wang, J.: Strong Feller continuity of Feller processes and semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15(2), 1250010 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tweedie, R.L.: Topological conditions enabling use of Harris methods in discrete and continuous time. Acta Appl. Math. 34(1–2), 175–188 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Villani, C.: Optimal Transport. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Sandrić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandrić, N. A Note on the Birkhoff Ergodic Theorem. Results Math 72, 715–730 (2017). https://doi.org/10.1007/s00025-017-0681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-017-0681-9

Keywords

Mathematics Subject Classification

Navigation